Лабораторная работа 1

Тема: Определение молярной массы эквивалента металла и его молярной (атомной) массы методом вытеснения.

Согласно закону эквивалентов Рихтера, реагенты и продукты реакции соотносятся между собой в количествах, пропорциональных их эквивалентам или молярным массам эквивалентов.

Цель работы: распознать неизвестный металл по его молярной массе.

Метод основан на измерении объема газа (водорода), вытесняемого известной массой металла из избытка раствора кислоты (серной или соляной) по реакции:

$$Me + nH_2SO_4 = Me_2(SO_4)_n + nH_2$$

ИЛИ

Где: n- валентность металла.

Экспериментальная часть

Реактивы: 2н раствор **H₂SO₄** (или **HCl**), навеска металла **Me** (**Mg**, **Al**, **Fe**, **Zn**).

Оборудование: прибор для определения объема водорода, выделяющегося по реакции Ме с кислотой.

Ход работы

(смотрите видео)

Измерительный параметр	Ед. изм.	Результаты измерений
Навеска металла	т,г	
Начальный уровень воды в бюретке	V _{1, МЛ}	
Конечный уровень воды в бюретке	V _{2, мл}	
Объем вытесненного газа (V2-V1)	V(H ₂), мл	
Атмосферное давление	Р _{атм,} Па	
Давление паров воды	h(н ₂ 0),Па	
Температура воздуха	t ⁰ C	

Измерительный параметр	Ед. изм.	Результаты измерений
Навеска металла	m,г	0,024Γ
Начальный уровень воды в бюретке	V _{1, МЛ}	14,5мл
Конечный уровень воды в бюретке	V _{2, мл}	38,7мл
Объем вытесненного газа (V2-V1)	V(H ₂), мл	
Атмосферное давление	Р _{атм,} Па	101058,35∏a
Давление паров воды	h(н ₂ 0),Па	2197Па
Температура воздуха	t ⁰ C	19 ⁰ C

Обработка результатов

1. Вычислите объем водорода (в мл), вытесненного металлом при температуре t и давлении $P_{\mathsf{атм}}$, по формуле: $V(\mathsf{H_2}) = V2 - V1$

2. Собранный над водой водород содержит водяной пар, поэтому парциальное давление водорода вычисляется по следующей формуле:

$$P(H_2) = P_{atm} - h(H_2O)$$

3. Приведите измеренный объем водорода к нормальным условиям, используя объединенный газовый закон:

где
$$T=T_0+t$$
, откуда

$$V_{0(H2)} = \frac{\mathbf{T_0}.V_{(H2)}.P_{(H2)}}{P_0.\mathbf{T}}$$

4. Рассчитайте молярную массу эквивалента металла Мэ (Ме) по закону эквивалентов, зная, что молярный объем эквивалента водорода Vэ (Н2) равен 11,2л/моль:

$$\frac{m_{(Me)}}{V_{0(H2)}} = \frac{M_{\Im(Me)}}{V_{\Im(H2)}}$$

Отсюда

$$M_{\mathfrak{I}_{(Me)}} = \frac{m_{(Me)V_{\mathfrak{I}(H2)}}}{V_{0(H2)}}$$

5. Рассчитайте молярную массу металла по уравнению:

Сравните рассчитанное значение молярной массы металла со значением молярной массы металла Me (Mg, Al, Fe, Zn), навески которых были предложены, определите неизвестный металл:

$$(B=2)$$
, $M(Mg)=24,3\Gamma/моль$
 $(B=3)$, $M(Al)=27\Gamma/моль$
 $(B=2,3)$, $M(Fe)=56\Gamma/моль$
 $(B=2)$, $M(Zn)=65\Gamma/моль$

6. Сравните полученное значение молярной массы металла M(Me) со значением молярной массы металла M0(Me), определенным по Периодической таблице Д.И. Менделеева, и найдите относительную ошибку вашего эксперимента (□) по уравнению:

$$\varepsilon = \frac{M_{0(Me)} - M_{(Me)}}{M_{0(Me)}}.100\%$$

7. Вывод: