
Pat Langley
Computational Learning Laboratory

Center for the Study of Language and Information
Stanford University, Stanford, California

http://cll.stanford.edu/

Learning Hierarchical Task Networks
from Problem Solving

Thanks to Dongkyu Choi, Kirstin Cummings, Seth Rogers, and Daniel Shapiro for
contributions to this research, which was funded by Grant HR0011-04-1-0008 from
DARPA IPTO and by Grant IIS-0335353 from NSF.

Classical Approaches to Planning

Generated plan

Classic
al

Planni
ng

Operators Problem

?

Planning with Hierarchical Task Networks

Generated plan

HTN
Planni

ng

Problem

?

Task Network

Classical and HTN Planning

∙Challenge: Can we unify classical and HTN planning in a
single framework?

∙Challenge: Can we use learning to gain the advantage of HTNs
while avoiding the cost of manual construction?

∙Hypothesis: The responses to these two challenges are closely
intertwined.

Mixed Classical / HTN Planning

Generated plan

Problem

?

Task Network

Operators

HTN
Planni

ng

impa
sse?

Classic
al

Planni
ng

yes

no

Learning HTNs from Classical Planning

Generated plan

Problem

?

Task Network

Operators

HTN
Planni

ng

impa
sse?

Classic
al

Planni
ng

yes

no

HTN
Learni

ng

Four Contributions of the Research

∙Representation: A specialized class of hierarchical task nets.
∙Execution: A reactive controller that utilizes these structures.
∙Planning: A method for interleaving HTN execution with
problem solving when impasses are encountered.
∙Learning: A method for creating new HTN methods from
successful solutions to these impasses.

A New Representational Formalism

∙Concepts: A set of conjunctive relational inference rules;
∙Primitive skills: A set of durative STRIPS operators;
∙Nonprimitive skills: A set of HTN methods which specify:
∙a head that indicates a goal the method achieves;
∙a single (typically defined) precondition;
∙one or more ordered subskills for achieving the goal.

This special class of hierarchical task networks can be executed
reactively but in a goal-directed manner (Nilsson, 1994).

A teleoreactive logic program consists of three components:

Some Defined Concepts (Axioms)
(clear (?block)
 :percepts ((block ?block))
 :negatives ((on ?other ?block)))
(hand-empty ()
 :percepts ((hand ?hand status ?status))
 :tests ((eq ?status 'empty)))
(unstackable (?block ?from)
 :percepts ((block ?block) (block ?from))
 :positives ((on ?block ?from) (clear ?block) (hand-empty)))
(pickupable (?block ?from)
 :percepts ((block ?block) (table ?from))
 :positives ((ontable ?block ?from) (clear ?block) (hand-empty)))
(stackable (?block ?to)
 :percepts ((block ?block) (block ?to))
 :positives ((clear ?to) (holding ?block)))
(putdownable (?block ?to)
 :percepts ((block ?block) (table ?to))
 :positives ((holding ?block)))

Some Primitive Skills (Operators)

(unstack (?block ?from)
 :percepts ((block ?block ypos ?ypos) (block ?from))
 :start (unstackable ?block ?from)
 :actions ((*grasp ?block) (*vertical-move ?block (+ ?ypos 10)))
 :effects ((clear ?from) (holding ?block)))

(pickup (?block ?from)
 :percepts ((block ?block) (table ?from height ?height))
 :start (pickupable ?block ?from)
 :effects ((holding ?block)))

(stack (?block ?to)
 :percepts ((block ?block) (block ?to xpos ?xpos ypos ?ypos height
?height))
 :start (stackable ?block ?to)
 :effects ((on ?block ?to) (hand-empty)))

(putdown (?block ?to)
 :percepts ((block ?block) (table ?to xpos ?xpos ypos ?ypos height
?height))
 :start (putdownable ?block ?to)
 :effects ((ontable ?block ?to) (hand-empty)))

 Some NonPrimitive Recursive Skills

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start (unstackable ?D ?C)
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C) (block ?B))
 :start [(on ?C ?B) (hand-empty)]
 :skills ((unstackable ?C ?B) (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B) (block ?C))
 :start [(on ?C ?B) (hand-empty)]
 :skills ((clear ?C) (hand-empty)))

(hand-empty ()
 :percepts ((block ?D) (table ?T1))
 :start (putdownable ?D ?T1)
 :skills ((putdown ?D ?T1)))

[Expanded for readability]

Teleoreactive logic programs
are executed in a top-down,
left-to-right manner, much as
in Prolog but extended over
time, with a single path being
selected on each time step.

Interleaving HTN Execution and Classical Planning

Solve(G)
 Push the goal literal G onto the empty goal stack GS.
 On each cycle,
 If the top goal G of the goal stack GS is satisfied,
 Then pop GS.
 Else if the goal stack GS does not exceed the depth limit,
 Let S be the skill instances whose heads unify with G.
 If any applicable skill paths start from an instance in S,
 Then select one of these paths and execute it.
 Else let M be the set of primitive skill instances that have not already failed in which G is an effect.
 If the set M is nonempty,
 Then select a skill instance Q from M.

 Push the start condition C of Q onto goal stack GS.
 Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F,
 Then if there is a subconcept I in H that has not yet failed,
 Then push I onto the goal stack GS.
 Else pop G from the goal stack GS and store information about failure with G's parent.
 Else pop G from the goal stack GS.
 Store information about failure with G's parent.

This is traditional means-ends analysis, with three exceptions: (1) conjunctive
goals must be defined concepts; (2) chaining occurs over both skills/operators
and concepts/axioms; and (3) selected skills are executed whenever applicable.

A Successful Planning Trace

(ontabl
e A T)

(on B
A)

(on C
B)

(hand-e
mpty)

(clear
C)

(unst.
C B)

(unstack C
B)

(clear
B)

(putdown C
T)

(unst.
B A)

(unstack B
A)

(clear
A)

(holdin
g C)

(hand-e
mpty)

(holdin
g B)

A
B
C B

A C

initial state

goal

Three Questions about HTN Learning

∙What is the hierarchical structure of the network?
∙What are the heads of the learned clauses/methods?
∙What are the conditions on the learned clauses/methods?

The answers follow naturally from our representation and from
our approach to plan generation.

Recording Results for Learning

Solve(G)
 Push the goal literal G onto the empty goal stack GS.
 On each cycle,
 If the top goal G of the goal stack GS is satisfied,
 Then pop GS and let New be Learn(G).
 If G's parent P involved skill chaining,
 Then store New as P's first subskill.
 Else if G's parent P involved concept chaining,
 Then store New as P's next subskill.
 Else if the goal stack GS does not exceed the depth limit,
 Let S be the skill instances whose heads unify with G.
 If any applicable skill paths start from an instance in S,
 Then select one of these paths and execute it.
 Else let M be the set of primitive skill instances that have not already failed in which G is an effect.
 If the set M is nonempty,
 Then select a skill instance Q from M, store Q with goal G as its last subskill,
 Push the start condition C of Q onto goal stack GS, and mark goal G as involving skill chaining.
 Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F,
 Then if there is a subconcept I in H that has not yet failed,
 Then push I onto the goal stack GS, store F with G as its initially true subconcepts,
 and mark goal G as involving concept chaining.
 Else pop G from the goal stack GS and store information about failure with G's parent.
 Else pop G from the goal stack GS.
 Store information about failure with G's parent.

The extended problem solver
calls on Learn to construct a
new skill clause and stores the
information it needs in the goal
stack generated during search.

Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during
planning, which, because both operator conditions and goals
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙ What are the conditions on the learned clauses/methods?

(ontabl
e A T)

(on B
A)

(on C
B)

(hand-e
mpty)

(clear
C)

(unst.
C B)

(unstack C
B)

(clear
B)

(putdown C
T)

(unst.
B A)

(unstack B
A)

(clear
A)

(holdin
g C)

(hand-e
mpty)

(holdin
g B)

A
B
C B

A C

1

skill chaining

Constructing Skills from a Trace

(ontabl
e A T)

(on B
A)

(on C
B)

(hand-e
mpty)

(clear
C)

(unst.
C B)

(unstack C
B)

(clear
B)

(putdown C
T)

(unst.
B A)

(unstack B
A)

(clear
A)

(holdin
g C)

(hand-e
mpty)

(holdin
g B)

A
B
C B

A C

1

2

skill chaining

Constructing Skills from a Trace

(ontabl
e A T)

(on B
A)

(on C
B)

(hand-e
mpty)

(clear
C)

(unst.
C B)

(unstack C
B)

(clear
B)

(putdown C
T)

(unst.
B A)

(unstack B
A)

(clear
A)

(holdin
g C)

(hand-e
mpty)

(holdin
g B)

A
B
C B

A C

1 3

2

concept chaining

Constructing Skills from a Trace

(ontabl
e A T)

(on B
A)

(on C
B)

(hand-e
mpty)

(clear
C)

(unst.
C B)

(unstack C
B)

(clear
B)

(putdown C
T)

(unst.
B A)

(unstack B
A)

(clear
A)

(holdin
g C)

(hand-e
mpty)

(holdin
g B)

A
B
C B

A C

1 3

2

4

skill chaining

Constructing Skills from a Trace

 Learned Skills After Structure Determined

(<head> (?C)
 :percepts ((block ?D) (block ?C))
 :start <condition>
 :skills ((unstack ?D ?C)))

(<head> (?B)
 :percepts ((block ?C) (block ?B))
 :start <condition>
 :skills ((unstackable ?C ?B) (unstack ?C ?B)))

(<head> (?C ?B)
 :percepts ((block ?B) (block ?C))
 :start <condition>
 :skills ((clear ?C) (hand-empty)))

(<head> ()
 :percepts ((block ?D) (table ?T1))
 :start <condition>
 :skills ((putdown ?D ?T1)))

Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during
planning, which, because both operator conditions and goals
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙The head of a learned clause is the goal literal that the
planner achieved for the subproblem that produced it.

∙ What are the conditions on the learned clauses/methods?

 Learned Skills After Heads Inserted

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start <condition>
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C) (block ?B))
 :start <condition>
 :skills ((unstackable ?C ?B) (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B) (block ?C))
 :start <condition>
 :skills ((clear ?C) (hand-empty)))

(hand-empty ()
 :percepts ((block ?D) (table ?T1))
 :start <condition>
 :skills ((putdown ?D ?T1)))

Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during
planning, which, because both operator conditions and goals
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙The head of a learned clause is the goal literal that the planner
achieved for the subproblem that produced it.

∙ What are the conditions on the learned clauses/methods?
∙If the subproblem involved skill chaining, they are the
conditions of the first subskill clause.
∙If the subproblem involved concept chaining, they are the
subconcepts that held at the outset of the subproblem.

 Learned Skills After Conditions Inferred

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start (unstackable ?D ?C)
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C) (block ?B))
 :start [(on ?C ?B) (hand-empty)]
 :skills ((unstackable ?C ?B) (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B) (block ?C))
 :start [(on ?C ?B) (hand-empty)]
 :skills ((clear ?C) (hand-empty)))

(hand-empty ()
 :percepts ((block ?D) (table ?T1))
 :start (putdownable ?D ?T1)
 :skills ((putdown ?D ?T1)))

Learning an HTN Method from a Problem Solution

Learn(G)
 If the goal G involves skill chaining,
 Then let S1 and S2 be G's first and second subskills.
 If subskill S1 is empty,
 Then return the literal for clause S2.
 Else create a new skill clause N with head G,
 with S1 and S2 as ordered subskills, and
 with the same start condition as subskill S1.
 Return the literal for skill clause N.
 Else if the goal G involves concept chaining,
 Then let {Ck+1, ..., Cn} be G's initially satisfied subconcepts.
 Let {C1, ..., Ck} be G's stored subskills.
 Create a new skill clause N with head G,
 with {Ck+1, ..., Cn} as ordered subskills, and
 with the conjunction of {C1, ..., Ck} as start condition.
 Return the literal for skill clause N.

Creating a Clause from Skill Chaining

1

83X Z

2

81 2X ZY
Problem
Solution

New
Method

Creating a Clause from Concept Chaining

Problem
Solution

New
Method

8

2

1

Y

BX

C
Z

D

A

A

D
#

B

83 Z

C

Important Features of Learning Method

∙it occurs incrementally from one experience at a time;
∙it takes advantage of existing background knowledge;
∙it constructs the hierarchies in a cumulative manner.

Our approach to learning HTNs has some important features:

In these ways, it is similar to explanation-based approaches to
learning from problem solving.

However, the method for finding conditions involves neither
analytic or inductive learning in their traditional senses.

An In-City Driving Environment

Our focus on learning for
reactive control comes
from an interest in complex
physical domains, such as
driving a vehicle in a city.

To study this problem, we
have developed a realistic
simulated environment that
can support many different
driving tasks.

 Skill Clauses Learning for In-City Driving

parked (?ME ?G1152)
 :percepts ((lane-line ?G1152) (self ?ME))
 :start ()
 :skills ((in-rightmost-lane ?ME ?G1152)
 (stopped ?ME))

 in-rightmost-lane (?ME ?G1152)
 :percepts ((self ?ME) (lane-line ?G1152))
 :start ((last-lane ?G1152))
 :skills ((driving-in-segment ?ME ?G1101 ?G1152))

driving-in-segment (?ME ?G1101 ?G1152)
 :percepts ((lane-line ?G1152) (segment ?G1101) (self
?ME))
 :start ((steering-wheel-straight ?ME))
 :skills ((in-lane ?ME ?G1152)
 (centered-in-lane ?ME ?G1101 ?G1152)
 (aligned-with-lane-in-segment ?ME ?G1101 ?G1152)
 (steering-wheel-straight ?ME))

Learning Curves for In-City Driving

Transfer Studies of HTN Learning

Because we were interested in our method’s ability to transfer its
learned skills to harder problems, we:

∙ created concepts and operators for Blocks World and FreeCell;

∙ let the system solve and learn from simple training problems;

∙ asked the system to solve and learning from harder test tasks;

∙ recorded the number of steps taken and solution probability;

∙ as a function of the number of transfer problems encountered;

∙ averaged the results over many different problem orders.

The resulting transfer curves revealed the system’s ability to take
advantage of prior learning and generalize to new situations.

Transfer Effects in the Blocks World

On 20-block tasks, there is no difference in solved problems.

20 blocks

Transfer Effects in the Blocks World

However, there is difference in the effort needed to solve them.

20 blocks

FreeCell Solitaire

FreeCell is a full-information card game that, in most cases, can
be solved by planning; it also has a highly recursive structure.

Transfer Effects in FreeCell

On 16-card FreeCell tasks, prior training aids solution probability.

16 cards

Transfer Effects in FreeCell

However, it also lets the system solve problems with less effort.

16 cards

Transfer Effects in FreeCell

On 20-card tasks, the benefits of prior training are much stronger.

20 cards

Transfer Effects in FreeCell

However, it also lets the system solve problems with less effort.

20 cards

Where is the Utility Problem?

Many previous studies of learning and planning found that:

∙ learned knowledge reduced problem-solving steps and search

∙ but increased CPU time because it was specific and expensive

We have not yet observed the utility problem, possibly because:

∙ the problem solver does not chain off learned skill clauses;

∙ our performance module does not attempt to eliminate search.

If we encounter it in future domains, we will collect statistics on
clauses to bias selection, like Minton (1988) and others.

Related Work on Planning and Execution

∙problem-solving architectures like Soar and Prodigy
∙Nilsson’s (1994) notion of teleoreactive controllers
∙execution architectures that use HTNs to structure knowledge
∙Nau et al.’s encoding of HTNs for use in plan generation

Our approach to planning and execution bears similarities to:

These mappings are valid but provide no obvious approach to
learning HTN structures from successful plans.

∙ Erol et al.’s (1994) complexity analysis of HTN planning
∙ Barrett and Weld’s (1994) use of HTNs for plan parsing

Other mappings between classical and HTN planning come from:

Related Research on Learning

∙production composition (e.g., Neves & Anderson, 1981)
∙macro-operator formation (e.g., Iba, 1985)
∙explanation-based learning (e.g., Mitchell et al., 1986)
∙chunking in Soar (Laird, Rosenbloom, & Newell, 1986)

Our learning mechanisms are similar to those in earlier work on:

which also learned decomposition rules from problem solutions.

∙ Marsella and Schmidt’s (1993) REAPPR
∙ Ruby and Kibler’s (1993) SteppingStone
∙ Reddy and Tadepalli’s (1997) X-Learn

But they do not rely on analytical schemes like goal regression,
and their creation of hierarchical structures is closer to that by:

The ICARUS Architecture

Long-Term
Conceptual

Memory

Long-Term
Skill Memory

Short-Term
Conceptual

Memory

Goal/Skill
Stack

Categorizati
on
and

Inference

Skill
Execution

Perception

Environment

Perceptual
Buffer

Problem
Solving

Skill
Learning Motor

Buffer

Skill
Retrieval

Hierarchical Structure of Long-Term Memory

concepts

skills

Each concept is defined in terms of other concepts and/or percepts.
Each skill is defined in terms of other skills, concepts, and percepts.

ICARUS organizes both concepts and skills in a hierarchical manner.

Interleaved Nature of Long-Term Memory

concepts

skills

For example, the skill highlighted here refers directly to
the highlighted concepts.

ICARUS interleaves its long-term memories for concepts and skills.

Recognizing Concepts and Selecting Skills

concepts

skills

Concepts are matched bottom up, starting from percepts.
Skill paths are matched top down, starting from intentions.

ICARUS matches patterns to recognize concepts and select skills.

Directions for Future Work

Despite our initial progress on structure learning, we should still:
∙ evaluate approach on more complex planning domains;
∙ extend method to support HTN planning rather than execution;
∙ generalize the technique to acquire partially ordered skills;
∙ adapt scheme to work with more powerful planners;
∙ extend method to chain backward off learned skill clauses;
∙ add technique to learn recursive concepts for preconditions;
∙ examine and address the utility problem for skill learning.

These should make our approach a more effective tool for learning
hierarchical task networks from classical planning.

∙relies on a new formalism – teleoreactive logic programs – that
identifies heads with goals and has single preconditions;
∙executes stored HTN methods when they are applicable but
resorts to classical planning when needed;
∙caches the results of successful plans in new HTN methods
using a simple learning technique;
∙creates recursive, hierarchical structures from individual
problems in an incremental and cumulative manner.

We have described an approach to planning and execution that:

This approach holds promise for bridging the longstanding divide
between two major paradigms for planning.

Concluding Remarks

End of Presentation

