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Classical and HTN Planning

∙Challenge: Can we unify classical and HTN planning in a 
single framework?

∙Challenge: Can we use learning to gain the advantage of HTNs 
while avoiding the cost of manual construction?  

∙Hypothesis: The responses to these two challenges are closely 
intertwined. 



Mixed Classical / HTN Planning
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Learning HTNs from Classical Planning
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Four Contributions of the Research

∙Representation: A specialized class of hierarchical task nets.
∙Execution: A reactive controller that utilizes these structures.
∙Planning: A method for interleaving HTN execution with 
problem solving when impasses are encountered.
∙Learning: A method for creating new HTN methods from 
successful solutions to these impasses.



A New Representational Formalism

∙Concepts: A set of conjunctive relational inference rules;
∙Primitive skills: A set of durative STRIPS operators;
∙Nonprimitive skills: A set of HTN methods which specify: 
∙a head that indicates a goal the method achieves;
∙a single (typically defined) precondition;
∙one or more ordered subskills for achieving the goal. 

This special class of hierarchical task networks can be executed 
reactively but in a goal-directed manner (Nilsson, 1994).

A teleoreactive logic program consists of three components:



Some Defined Concepts (Axioms)
(clear (?block)
 :percepts ((block ?block))
 :negatives ((on ?other ?block)))
(hand-empty (  )
 :percepts ((hand ?hand status ?status))
 :tests ((eq ?status 'empty)))
(unstackable (?block ?from)
 :percepts ((block ?block) (block ?from))
 :positives ((on ?block ?from) (clear ?block) (hand-empty)))
(pickupable (?block ?from)
 :percepts ((block ?block) (table ?from))
 :positives ((ontable ?block ?from) (clear ?block) (hand-empty)))
(stackable (?block ?to)
 :percepts ((block ?block) (block ?to))
 :positives ((clear ?to) (holding ?block)))
(putdownable (?block ?to)
 :percepts ((block ?block) (table ?to))
 :positives ((holding ?block)))



Some Primitive Skills (Operators)

(unstack (?block ?from)
 :percepts ((block ?block ypos ?ypos) (block ?from))
 :start (unstackable ?block ?from)
 :actions ((*grasp ?block) (*vertical-move ?block (+ ?ypos 10)))
 :effects ((clear ?from) (holding ?block)))

(pickup (?block ?from)
 :percepts ((block ?block) (table ?from height ?height))
 :start (pickupable ?block ?from)
 :effects ((holding ?block)))

(stack (?block ?to)
 :percepts ((block ?block) (block ?to xpos ?xpos ypos ?ypos height 
?height))
 :start (stackable ?block ?to)
 :effects ((on ?block ?to) (hand-empty)))

(putdown (?block ?to)
 :percepts ((block ?block) (table ?to xpos ?xpos ypos ?ypos height 
?height))
 :start    (putdownable ?block ?to)
 :effects ((ontable ?block ?to) (hand-empty)))



 Some NonPrimitive Recursive Skills

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start (unstackable ?D ?C)
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C)  (block ?B))
 :start [(on ?C ?B)  (hand-empty)]
 :skills ((unstackable ?C ?B)  (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B)  (block ?C))
 :start [(on ?C ?B)  (hand-empty)]
 :skills ((clear ?C)  (hand-empty)))

(hand-empty (  )
 :percepts ((block ?D)  (table ?T1))
 :start (putdownable ?D ?T1)
 :skills ((putdown ?D ?T1)))

[Expanded for readability]

Teleoreactive logic programs 
are executed in a top-down, 
left-to-right manner, much as 
in Prolog but extended over  
time, with a single path being 
selected on each time step. 



Interleaving HTN Execution and Classical Planning

Solve(G)
  Push the goal literal G onto the empty goal stack GS.
  On each cycle,
     If the top goal G of the goal stack GS is satisfied,
     Then pop GS.
     Else if the goal stack GS does not exceed the depth limit,
          Let S be the skill instances whose heads unify with G.
          If any applicable skill paths start from an instance in S,
          Then select one of these paths and execute it.
          Else let M be the set of primitive skill instances that have not already failed in which G is an effect.
               If the set M is nonempty,
               Then select a skill instance Q from M.

   Push the start condition C of Q onto goal stack GS.
               Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F,
                      Then if there is a subconcept I in H that has not yet failed,
                               Then push I onto the goal stack GS.
                               Else pop G from the goal stack GS and store information about failure with G's parent.
                      Else pop G from the goal stack GS.
                             Store information about failure with G's parent.

This is traditional means-ends analysis, with three exceptions: (1) conjunctive  
goals must be defined concepts; (2) chaining occurs over both skills/operators 
and concepts/axioms; and (3) selected skills are executed whenever applicable. 
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Three Questions about HTN Learning

∙What is the hierarchical structure of the network?
∙What are the heads of the learned clauses/methods?
∙What are the conditions on the learned clauses/methods? 

The answers follow naturally from our representation and from 
our approach to plan generation. 



Recording Results for Learning

Solve(G)
  Push the goal literal G onto the empty goal stack GS.
  On each cycle,
     If the top goal G of the goal stack GS is satisfied,
     Then pop GS and let New be Learn(G).
          If G's parent P involved skill chaining,
          Then store New as P's first subskill.
          Else if G's parent P involved concept chaining,
                 Then store New as P's next subskill.
     Else if the goal stack GS does not exceed the depth limit,
          Let S be the skill instances whose heads unify with G.
          If any applicable skill paths start from an instance in S,
          Then select one of these paths and execute it.
          Else let M be the set of primitive skill instances that have not already failed in which G is an effect.
               If the set M is nonempty,
               Then select a skill instance Q from M, store Q with goal G as its last subskill,
                        Push the start condition C of Q onto goal stack GS, and mark goal G as involving skill chaining.
               Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F,
                       Then if there is a subconcept I in H that has not yet failed,
                                Then push I onto the goal stack GS, store F with G as its initially true subconcepts, 
                                     and mark goal G as involving concept chaining.
                                Else pop G from the goal stack GS and store information about failure with G's parent.
                       Else pop G from the goal stack GS.
                              Store information about failure with G's parent.

The extended problem solver 
calls on Learn to construct a 
new skill clause and stores the 
information it needs in the goal 
stack generated during search.



Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during 
planning, which, because both operator conditions and goals 
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙ What are the conditions on the learned clauses/methods?  
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 Learned Skills After Structure Determined

(<head>  (?C)
 :percepts ((block ?D) (block ?C))
 :start <condition>
 :skills ((unstack ?D ?C)))

(<head>  (?B)
 :percepts ((block ?C)  (block ?B))
 :start <condition>
 :skills ((unstackable ?C ?B)  (unstack ?C ?B)))

(<head>  (?C ?B)
 :percepts ((block ?B)  (block ?C))
 :start <condition>
 :skills ((clear ?C)  (hand-empty)))

(<head>  (  )
 :percepts ((block ?D)  (table ?T1))
 :start <condition>
 :skills ((putdown ?D ?T1)))



Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during 
planning, which, because both operator conditions and goals 
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙The head of a learned clause is the goal literal that the 
planner achieved for the subproblem that produced it.

∙ What are the conditions on the learned clauses/methods? 



 Learned Skills After Heads Inserted

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start <condition>
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C)  (block ?B))
 :start <condition>
 :skills ((unstackable ?C ?B)  (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B)  (block ?C))
 :start <condition>
 :skills ((clear ?C)  (hand-empty)))

(hand-empty (  )
 :percepts ((block ?D)  (table ?T1))
 :start <condition>
 :skills ((putdown ?D ?T1)))



Three Questions about HTN Learning

∙ What is the hierarchical structure of the network?
∙The structure is determined by the subproblems solved during 
planning, which, because both operator conditions and goals 
are single literals, form a semilattice.

∙ What are the heads of the learned clauses/methods?
∙The head of a learned clause is the goal literal that the planner 
achieved for the subproblem that produced it.

∙ What are the conditions on the learned clauses/methods? 
∙If the subproblem involved skill chaining, they are the 
conditions of the first subskill clause.
∙If the subproblem involved concept chaining, they are the 
subconcepts that held at the outset of the subproblem. 



 Learned Skills After Conditions Inferred

(clear (?C)
 :percepts ((block ?D) (block ?C))
 :start (unstackable ?D ?C)
 :skills ((unstack ?D ?C)))

(clear (?B)
 :percepts ((block ?C)  (block ?B))
 :start [(on ?C ?B)  (hand-empty)]
 :skills ((unstackable ?C ?B)  (unstack ?C ?B)))

(unstackable (?C ?B)
 :percepts ((block ?B)  (block ?C))
 :start [(on ?C ?B)  (hand-empty)]
 :skills ((clear ?C)  (hand-empty)))

(hand-empty ( )
 :percepts ((block ?D)  (table ?T1))
 :start (putdownable ?D ?T1)
 :skills ((putdown ?D ?T1)))



Learning an HTN Method from a Problem Solution

Learn(G)
  If the goal G involves skill chaining,
  Then let S1 and S2 be G's first and second subskills.
       If subskill S1 is empty,
       Then return the literal for clause S2.
       Else create a new skill clause N with head G,
                   with S1 and S2 as ordered subskills, and
                   with the same start condition as subskill S1.
              Return the literal for skill clause N.
  Else if the goal G involves concept chaining,
         Then let {Ck+1, ..., Cn} be G's initially satisfied subconcepts.
                  Let {C1, ..., Ck} be G's stored subskills.
                  Create a new skill clause N with head G,
                        with {Ck+1, ..., Cn} as ordered subskills, and
                        with the conjunction of {C1, ..., Ck} as start condition.
                  Return the literal for skill clause N.



Creating a Clause from Skill Chaining
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Creating a Clause from Concept Chaining
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Important Features of Learning Method

∙it occurs incrementally from one experience at a time; 
∙it takes advantage of existing background knowledge;  
∙it constructs the hierarchies in a cumulative manner.

Our approach to learning HTNs has some important features:  

In these ways, it is similar to explanation-based approaches to 
learning from problem solving.

However, the method for finding conditions involves neither 
analytic or inductive learning in their traditional senses. 



An In-City Driving Environment

Our focus on learning for 
reactive control comes 
from an interest in complex 
physical domains, such as 
driving a vehicle in a city.

To study this problem, we 
have developed a realistic 
simulated environment that 
can support many different 
driving tasks.  



 Skill Clauses Learning for In-City Driving

parked (?ME ?G1152)
   :percepts ( (lane-line ?G1152) (self ?ME))
   :start (  )
   :skills ( (in-rightmost-lane ?ME ?G1152)
               (stopped ?ME))

 in-rightmost-lane (?ME ?G1152)
   :percepts ( (self ?ME) (lane-line ?G1152))
   :start    ( (last-lane ?G1152))
   :skills   ( (driving-in-segment ?ME ?G1101 ?G1152))

driving-in-segment (?ME ?G1101 ?G1152)
   :percepts ( (lane-line ?G1152) (segment ?G1101) (self 
?ME))
   :start    ( (steering-wheel-straight ?ME))
   :skills   ( (in-lane ?ME ?G1152)
              (centered-in-lane ?ME ?G1101 ?G1152)
              (aligned-with-lane-in-segment ?ME ?G1101 ?G1152)
              (steering-wheel-straight ?ME))



Learning Curves for In-City Driving



Transfer Studies of HTN Learning

Because we were interested in our method’s ability to transfer its 
learned skills to harder problems, we: 

∙ created concepts and operators for Blocks World and FreeCell;

∙ let the system solve and learn from simple training problems;

∙ asked the system to solve and learning from harder test tasks;

∙ recorded the number of steps taken and solution probability;

∙ as a function of the number of transfer problems encountered; 

∙ averaged the results over many different problem orders. 

The resulting transfer curves revealed the system’s ability to take 
advantage of prior learning and generalize to new situations. 



Transfer Effects in the Blocks World

On 20-block tasks, there is no difference in solved problems. 

20 blocks



Transfer Effects in the Blocks World

However, there is difference in the effort needed to solve them. 

20 blocks



FreeCell Solitaire

FreeCell is a full-information card game that, in most cases, can 
be solved by planning; it also has a highly recursive structure. 



Transfer Effects in FreeCell

On 16-card FreeCell tasks, prior training aids solution probability.

16 cards



Transfer Effects in FreeCell

However, it also lets the system solve problems with less effort. 

16 cards



Transfer Effects in FreeCell

On 20-card tasks, the benefits of prior training are much stronger.

20 cards



Transfer Effects in FreeCell

However, it also lets the system solve problems with less effort. 

20 cards



Where is the Utility Problem?

Many previous studies of learning and planning found that: 

∙  learned knowledge reduced problem-solving steps and search

∙  but increased CPU time because it was specific and expensive

We have not yet observed the utility problem, possibly because:

∙  the problem solver does not chain off learned skill clauses;  

∙  our performance module does not attempt to eliminate search.  

If we encounter it in future domains, we will collect statistics on 
clauses to bias selection, like Minton (1988) and others. 



Related Work on Planning and Execution

∙problem-solving architectures like Soar and Prodigy
∙Nilsson’s (1994) notion of teleoreactive controllers
∙execution architectures that use HTNs to structure knowledge
∙Nau et al.’s encoding of HTNs for use in plan generation

Our approach to planning and execution bears similarities to: 

These mappings are valid but provide no obvious approach to 
learning HTN structures from successful plans.

∙ Erol et al.’s (1994) complexity analysis of HTN planning
∙ Barrett and Weld’s (1994) use of HTNs for plan parsing

Other mappings between classical and HTN planning come from: 



Related Research on Learning

∙production composition (e.g., Neves & Anderson, 1981)
∙macro-operator formation (e.g., Iba, 1985)
∙explanation-based learning (e.g., Mitchell et al., 1986)
∙chunking in Soar (Laird, Rosenbloom, & Newell, 1986)

Our learning mechanisms are similar to those in earlier work on: 

which also learned decomposition rules from problem solutions. 

∙ Marsella and Schmidt’s (1993) REAPPR
∙ Ruby and Kibler’s (1993) SteppingStone
∙ Reddy and Tadepalli’s (1997) X-Learn

But they do not rely on analytical schemes like goal regression, 
and their creation of hierarchical structures is closer to that by: 



The ICARUS Architecture
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Hierarchical Structure of Long-Term Memory

concepts

skills

Each concept is defined in terms of other concepts and/or percepts.
Each skill is defined in terms of other skills, concepts, and percepts.

ICARUS organizes both concepts and skills in a hierarchical manner.



Interleaved Nature of Long-Term Memory

concepts

skills

For example, the skill highlighted here refers directly to 
the highlighted concepts.

ICARUS interleaves its long-term memories for concepts and skills.



Recognizing Concepts and Selecting Skills

concepts

skills

Concepts are matched bottom up, starting from percepts.
Skill paths are matched top down, starting from intentions.

ICARUS matches patterns to recognize concepts and select skills.



Directions for Future Work

Despite our initial progress on structure learning, we should still:
∙ evaluate approach on more complex planning domains;
∙ extend method to support HTN planning rather than execution;
∙ generalize the technique to acquire partially ordered skills;
∙ adapt scheme to work with more powerful planners; 
∙ extend method to chain backward off learned skill clauses;
∙ add technique to learn recursive concepts for preconditions; 
∙ examine and address the utility problem for skill learning.

These should make our approach a more effective tool for learning 
hierarchical task networks from classical planning.  



∙relies on a new formalism – teleoreactive logic programs – that 
identifies heads with goals and has single preconditions;
∙executes stored HTN methods when they are applicable but 
resorts to classical planning when needed;
∙caches the results of successful plans in new HTN methods 
using a simple learning technique; 
∙creates recursive, hierarchical structures from individual 
problems in an incremental and cumulative manner. 

We have described an approach to planning and execution that:

This approach holds promise for bridging the longstanding divide 
between two major paradigms for planning.  

Concluding Remarks



End of Presentation


