ACTUATORS AND SENSORS. PART I

Lecture 12

Irob 2305 Introduction to Robotics

OUTLINE

- Motivation, why robots need sensors?
- Difference between actuators and sensors
- Robotic sensor classification
- Sensor Performance
- Calculation of errors

Sensors in Robotics are primarily used for two different purposes:

- I. Give the robot information about itself
- •2. Give the robot information about its environment

Examples:

Temperature sensors
Humidity sensors
Light level sensors

Examples:

DC motors
Servo motors
Stepper motors

Any kind of device that converts one kind of energy into another Sensors: input transducers

Actuators: output transducers

COMMON COMPLETE ROBOT SYSTEM

- I. Take in a physical property through the sensor;
- 2. Converting to electrical property which can be measured;
- 3. Do some calculations using that measurement
- 4. Adjust the electrical property using the actuator;
- 5. Affecting the physical world.

CLASSIFICATION

- Robot sensors can be classified into two groups:
- Internal sensors and external sensors

Internal sensors: Obtain the information about the robot itself.

 position sensor, velocity sensor, acceleration sensors, motor torque sensor, etc

EXTERNAL SENSORS

- External sensors: Obtain the information in the surrounding environment.
- Cameras for viewing the environment
- Range sensors: IR sensor, laser range finder, ultrasonic sensor, etc.
- Contact and proximity sensors: Photodiode, IR detector, RFID, touch etc.
- - Force sensors: measuring the interaction forces with the environment, etc.

Evaluation Criteria for Sensors

- 1. **Sensitivity** how sensitive is the sensor
- usually max. sensitivity that provide linear accurate signals.
- **2. Linearity** operation is linear to the input.
- 3. Range difference between max. & min. value.
- **4. Response time** faster than the sampling time in microprocessor.
- **5. Accuracy** different between measured and actual.
- 6. Repeatability ability to repeat between several measuremets.
- 7. **Resolution** a measure of the number of measurementy.
- 8. Type of output.
- 9. Physical consideration weight and size.
 - reliability.
 - interfacing.

Static characteristics of instruments

- Accuracy: closeness to correct value
- Precision: indication of spread of readings
 - Repeatability/reproducibility: variation of a set of measurements made in a short/long period of time

Accuracy is often quoted as a % of full-scale (f.s.) reading.

Example: pressure gauge, range 0-10 bar with accuracy ±1% f.s.

This means ± 0.1 bar, or if you are reading 1 bar, the possible error is 10%.

High accuracy, high precision

Low accuracy, high precision

Measure of

Precision

Need to average

Measure of

Accuracy

Bias:

need to calibrate

Low accuracy, low precision

DEVICE ERROR

```
Absolute Error (E<sub>A</sub>):

E<sub>A</sub> = measured value – true value

E<sub>A</sub> = Y-X
Relative Error (E<sub>R</sub>):

E<sub>R</sub> = |E<sub>A</sub>/X|*100%
Example: X = 20 °C,Y = 21.3 °C, find E<sub>R</sub>?

E<sub>A</sub> = 21.3 – 20.0 = 1.3.

E<sub>R</sub> = 1.3/20 *100 = 6.5 %.
```

TOLERANCE (LIMITING ERROR)

- For certain devices (components) we use Tolerance instead of Error.
- A resistor has a tolerance of 5% and a nominal value of 1000 Ω :

This means that the actual value of this resistor fall in this range: (950 - 1050) Ω .

$$5*1000/100 = 50 \Omega$$
.

$$1000 - 50 = 950.$$

$$1000 + 50 = 1050$$
.

ACCURACY & INACCURACY

- Definition: A measure of how close the output of the Instrument (measured value Y) to the true value X.
- Absolute Accuracy:

$$A_A = 1 - \left| \frac{Y - X}{X} \right|$$

Relative Accuracy:

$$A_R = A_A \times 100 = 100 - \left| \frac{Y - X}{X} \right| \times 100 = 100 - E_R$$

• Example: X = 20 °C, Y = 21.3 °C, find A_A &A_R? $E_A = 21.3 - 20.0 = 1.3.$ $E_R = 1.3/20 *100 = 6.5 \%.$ $A_A = 1-0.065 = 0.935.$ $A_R = 93.5\%.$

- Inaccuracy (Uncertainty) = $I A_A$. = $E_R/100$.
- **Note**: Inaccuracy is often given as a percentage of full scale (f.s) reading of an instrument.

ANALOG SENSOR: POTENTIOMETER

- Analog sensor for measuring the rotational position
- Potentiometer = varying resistance
- Resistance changes with the position of the deal
- Converts rotational angel (physical input) to resistance (electrical output)

SENSOR RESPONSE CURVE FOR POTENTIO METER

Used to define different kind of properties of sensor including errors.

Initial position

After several experiment by rotating the position

RANGE (FULL SCALE)

• The difference between the minimum angle and the maximum angle

NONLINEARITY ERROR

SENSITIVITY

 The amount of change in the output -> results from a particular change in the input

NEXT: WIDE RANGE OF SENSORS

SENSOR FUSION