

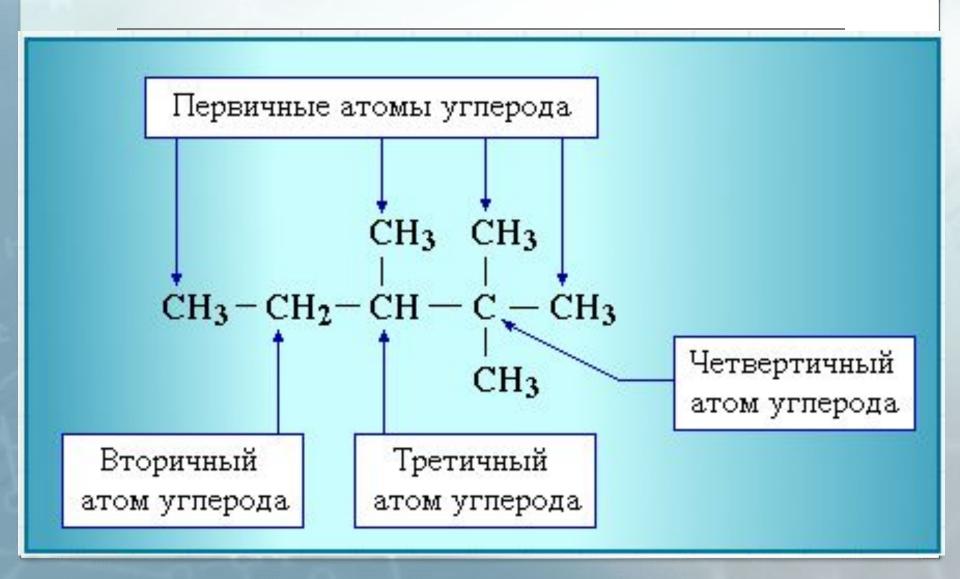
Классификация

Ациклические

Ациклические (алифатические) соединения

предельные

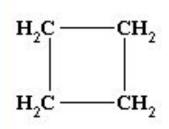
непредельные


$$CH_3$$
 $CH_2 = C - CH = CH_2$

HC≡CH

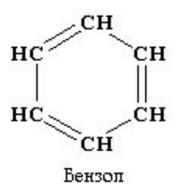
Изопрен

Ацетипен

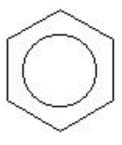

Число связей атома углерода

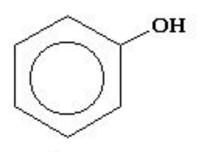
Циклические углеводороды

алициклические


Циклобутан

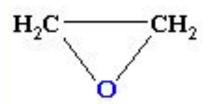
$$\begin{array}{c|c} \mathbf{H_2C} & \mathbf{CH_2} \\ & & \mathbf{CH_2} \\ \mathbf{H_2C} & \mathbf{CH_2} \\ & \mathbf{CH_2} \end{array}$$

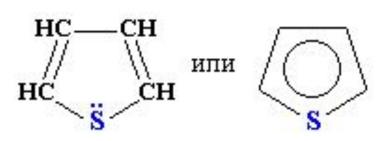

Циклогексан


Циклогексен

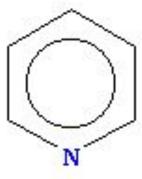
ароматические

ипи




Феноп

Циклические углеводороды


Гетероциклические соединения

Этипеноксид (эпоксид)

Тиофен

Пиридин

Классификация по функциональным группам

TOTAL COLUMN TOTAL COUPLING	Классы о	рганических	соединений
-----------------------------	----------	-------------	------------

Функциональ- ная группа	Название группы	Классы соединений	Общая формула	Пример
-ОН	Гилогонд	Спирты	R-OH	С₂Н₅ОН этиловый слирт
	Гидроксип	Фенолы	K-OH	⊙он фенол
)C=0	Карбонил	Альдегиды	R H>C=0	СН ₃ СНО уксусный альдегид
	Кароонип	Кетоны	R > C = 0	CH ₃ COCH ₃ ацетон
-C ₀ OH	Карбоксип	Карбоновые кислоты	R-C ^{≠0} OH	СН ₃ СООН уксусная кислота
-NO ₂	Нитро	Нитро- ∞единения	R-NO ₂	CH ₃ NO ₂ нитрометан
-NH ₂	Амино	Амины	R-NH ₂	⊙мн ₂ анилин
-F, -Cl, -Br, -I (Hal)	Фтор, клор, бром, иод (галоген)	Галогено- производные	R-Hal	СН ₃ С1 хпористый метил

Полифункциональные соединения

Моно функциональные соединения

CH₃CH₂OH

CH₃COOH

этанол (этиловый спирт)

уксусная кислота

Полифункциональные соединения

HO-CH, CH, OH

HO-CH₂CH-CH₂OH

OH

этиленгликоль глицерин

Гетерофункциональные соединения

CI-CH2-COOH

H₂N-CH-COOH CH₃

хлоруксусная кислота аминокислота аланин

Гомологические ряды

Алканы: $\mathbf{CH_4}$ метан

СН-СН, этан

 $CH_3^-CH_2^-CH_3$ пропан

CH₃CH₅CH₅CH₃ бутан

CH₃CH₂CH₂CH₂CH₃ nehman

Спирты:

CH-OH

метанол

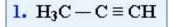
CH₃CH₂OH

этанол

CH₃CH₂CH₂OH

пропанол

CH₃CH₂CH₂CH₂OH


бутанол

гомологическая разность: -CH₂-

1. Найдите соответствие между функциональными группами и приведенными ниже утверждениями

	-СООН	-NO ₂	-OR	-NH ₂	}c=o	-OH
а) в состав спиртов входит	1	руппа;				
б) амины содержат	-групп	y ;				
в) в состав альдегидов и кетоно	в входит		Г	руппа;		
г) в молекулах карбоновых кисл	ют содержитс	я к		групп	ta.	

- А. Альдегиды _____
- Б. Амины _____
- В. Карбоновые кислоты __
- Г. Спирты _____
- Д. Углеводороды _____
- Е. Углеводы –

3. Перечислите, к каким классам или группам органических соединений можно отнести ванилин,

формула которого

- 1) альдегид; 2) гетероцикл; 3) кислота; 4) простой эфир;
- 5) сложный эфир; 6) углевод; 7) фенол.

1, 2, 3 1, 4, 7 2, 3, 7

3, 4, 7 1, 5, 7 1, 4, 6, 7

- 4. Отличие гомологов друг от друга в
- 1) качественном составе 2) количественном составе
- 3) химическом строении 4) химических свойствах

- 5. Какие из приведенных соединений относятся к классу:

 - а) спиртов; б) карбоновых кислот?
 - I. C_3H_7OH

- II. CH₃ CHO
- III. CH₃ COOH IV. CH₃ NO₂

- Ответ: a) Ш; б) IV
- Ответ: a) I; б) II
- **Ответ:** а) П; б) І
- Ответ: а) I; б) Ш

6. Какие соединения относятся к аминокислотам?

I. $NO_2 C_2 H_4 COOH$

II. CH₃ CONH₂

III. H_2 NC H_2 COOH

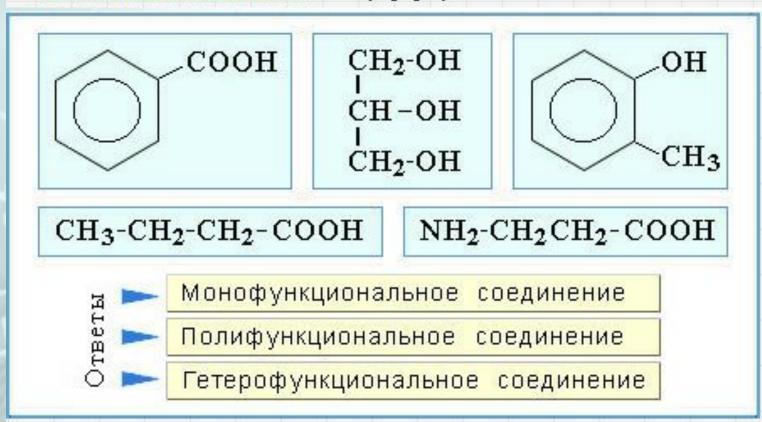
IV. HOOC-CH(CH₃)NH₂

(|:

соединение I

():

соединения П и Ш


∢:

соединение Ш

соединения Ш и IV

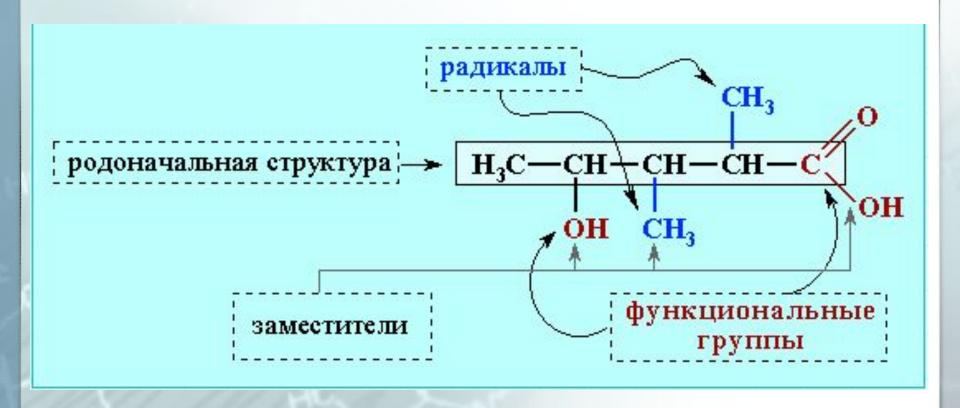
7. Установите соответствие между формулой соединения и его типом:

Номенклатура соединений (по ИЮПАК (IUPAC)):

- -заместительная
- •радикальнофункциональная

Термины

Для применения номенклатуры ИЮПАК необходимо знать смысл ряда номенклатурных терминов: *родоначальная* структура, функциональная группа, органический радикал, заместитель.


Родоначальная структура – химическая структура, составляющая основу называемого соединения. В ациклических соединениях это главная углеродная цепь, а в циклических – карбоцикл или гетероцикл.

Функциональная группа – атом или группа атомов, определяющая принадлежность соединения к определенному классу, связанная с родоначальной структурой или частично входящая в ее состав.

Органический радикал – остаток молекулы, из которой формально удалены один или два атома водорода, при этом остаются свободными одна или две валентности (остатки молекул с большим, чем 2 числом свободных валентностей как органические радикалы обычно не рассматриваются).

Заместитель — любой атом или группа атомов, замещающие атом водорода в родоначальной структуре. Заместителями являются как функциональные группы, так и радикалы.

Термины

Заместительная номенклатура

Префиксы	Название родо етрукт	Суффике	
1.77.11	корень	суффикс	
Все заместители в едином алфавитном порядке (кроме старшей функциональной группы)	Главная цепь, основная циклическая или гетероциклическая структура	Степень насыщенности: -ан, -ен, -ин	Только старшая функциональ- ная группа

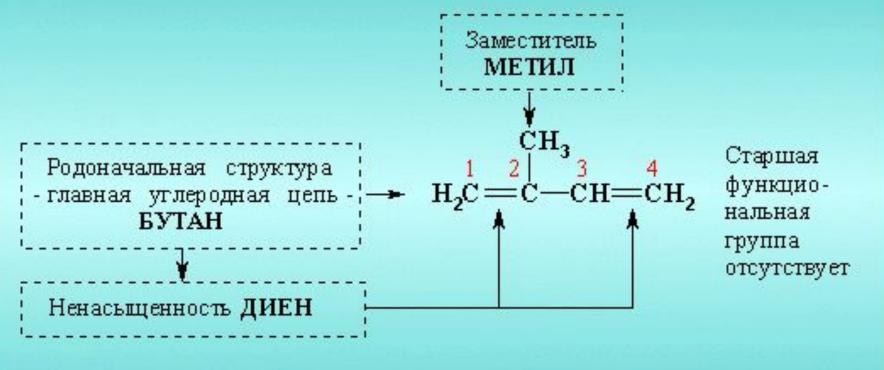
Префиксы

Функциональные группы, обозначаемые только префиксами

Класс соединений	Группа	Префикс
Галогено- производные	-F, -Cl, -Br, -I	фторо, хлоро, бромо, иодо*
Простые эфиры	-OR	алкокси
Сульфиды	-SR	алкилтио
Нитросоединения	-NO ₂	нитро

^{*}В русской терминологии концевая буква "о" часто опускается.

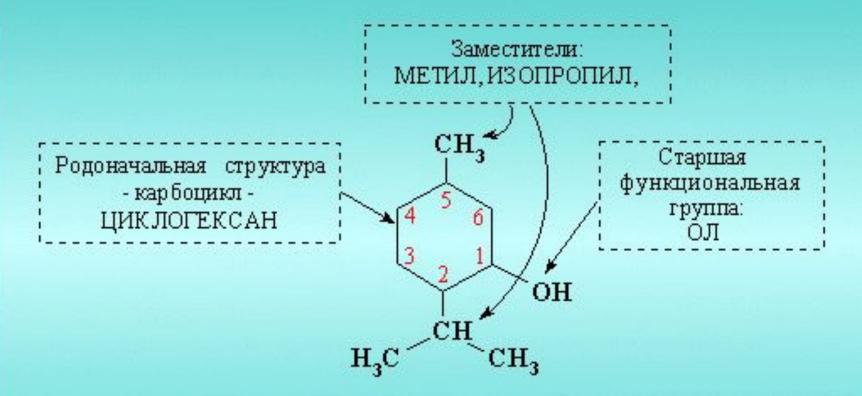
Порядок старшинства


Функциональные группы, обозначаемые только префиксами

Класс соединений	Группа	Префикс
Галогено- производные	-F, -Cl, -Br, -I	фторо, хлоро, бромо, иодо*
Простые эфиры	-OR	алкокси
Сульфиды	-SR	алкилтио
Нитросоединения	-NO ₂	нитро

^{*} В русской терминологии концевая буква "о" часто опускается.

<u>Пример 1</u>. Изопрен $CH_2=C(CH_3)-CH=CH_2$


структурная единица натурального кау чука:

2-Метилбутадиен-1,3

Пример 2. Ментол - компонент препарата валидол

2-Изопропил-5-метилциклогексанол

Радикально-функциональная номенклатура

Функциональная группа	Название класса
-CN	Цианид
>C=O	Кетон
-NH ₂ , -NH-, >N-	Амин
-OH	Спирт
-SH	Гидросуль фид
-O-OH	Гидропероксид
-O-	Эфир или оксид
-S-, >S=O	Сульфид, сульфоксид
-F, -Cl, -Br, -I	Фторид, хлорид, бромид, иодид

Структура названия соединения:

название радикала (радикалов) + название класса

Радикально-функциональная номенклатура

 C_2H_5 OH

Этиловый спирт $C_2H_5-O-C_2H_5$

Диэтиловый эфир $H_2C = CH - O - C_4H_9$

Винилбутиловый эфир

Метилфенилкетон

$$C_2H_5Br$$

Этил**бромид**

Диметиламин

- 1. Какая номенклатура использована в названии соединения C₂ H₅ Br этилбромид?
- заместительная номенклатура ИЮПАК
- 🛂 радикально-функциональная номенклатура ИЮПАК
- название тривиальное

- 2. Название *глицерин*, данное соединению CH₂ OH-CHOH-CH₂ OH, соответствует
- заместительной номенклатуре ИЮПАК
- 🛂 радикально-функциональной номенклатуре ИЮПАК
- 🔽 название тривиальное

3. Корневую часть в названии соединения

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3-CH-CH_2-C-CH_3} \\ \operatorname{CH_3} & \operatorname{CH_2-CH_3} \end{array}$$

по систематической международной номенклатуре определяет структура, содержащая число углеродных атомов, равное

$$\begin{array}{c} CH_{3} \\ CH_{3}\text{-}CH\text{-}CH_{2}\text{-}C\text{-}CH_{3} \\ CH_{3} \\ CH_{2}\text{-}CH_{3} \end{array}$$

4. Укажите старшую функциональную группу и число углеродных атомов в родоначальной структуре соединения:

$$\begin{array}{c} \text{H}_2\text{N}-\text{CH}-\text{CH}_2\text{OH} \\ \mid \\ \text{C}_2\text{H}_5 \end{array}$$

- ☑ –ОН; З атома С
- -ОН; 4 атома С
- ✓ -NH₂; 2 атома С
- ✓ -NH₂; 4 атома С

$$\substack{ H_2N-CH-CH_2OH \\ C_2H_5}$$

- 5. Какие названия соединения CH₃ CH₂ OH даны с нарушением правил ИЮПАК:
 - а) 1-гидроксиэтан,
 - б) гидроксиэтан,
 - в) этангидроксид,
 - г) этанол,
 - д) этанол-1,
 - е) этиловый спирт?

а, б, в а, б, д

а, б, в, д, е

а, в, д б, в, г, е

а, б, в, д