Научно-практическая конференция среди школьников

Тема: «Микробиологический анализ школьного помещения. »

Таблица 3. Количество микроорганизмов, содержащееся 1м3 воздуха школьных помещений:

Помещение	1-ая чашка	2-ая чашка	3-ая чашка	Среднее
Класс	1910	637	2165	1571±473
Коридор	3949	3439	1371	2920±788
Столовая	5222	2929	5605	4585±836
Спортзал	23439	8407	16814	16220±4350

Однако необходимо отметить, что выявленные различия между классом и коридором, а также коридором и столовой не достоверны по t-критерию Стьюдента. Также следует добавить, что, исходя из литературных данных (таблица 1), эти помещения можно отнести к числу «чистых». Среди рассмотренных помещений только спортзал может рассматриваться в качестве «относительно грязного». Повидимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней. Различия в сравниваемых парах помещений - класс-спортзал, коридор-спортзал и столовая-спортзал, являются достоверными с 1% или 5% уровнем значимости.

Методика расчета:

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле ттг2: 2) вычисляют количество колоний на площади 1 дм2; 3) пересчитывают количество бактерий на 1м3 воздуха.

Примерный расчет. В чашке Петри диаметром в 10 см выросло 25 колоний.

Определяют площадь питательной среды в чашке Петри по формуле3,14*52 или 3,14*25=78,5 см2

2) вычисляют количество колоний на площади 1 дм, равного 100 см2 25колоний - $78,5~\mathrm{cm2}$

х-25*100/78,5=32 колоний

х колоний - 100 мм2

т. е. на площади 1 дм2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м3 воздуха, который равен 1000л Содержащиеся 32 колоний бактерий на площади 1 дм2 соответствуют объему Юл воздуха. Чтобы узнать количество в 1м3 воздуха, составляют пропорцию:

32-10

x=32*1000/10=3200

x - 1000

Следовательно, в 1м3 воздуха содержится 3200 бактериальных телец

Таблица 4. Количество микроорганизмов, содержащееся в 1м3 воздуха школьного коридора в разные периоды времени:

Коридор	1-ая чашка	1-ая чашка	3-я чашка	Среднее
До 1 урок	1146	1371	1371	1296±75
1 перемена	1783	1529	2166	1826±185
5 перемена	3949	3949	1371	2920±788

• В таблице 4 разброс значений может быть значительным. Так, на 5 перемене анализ двух чашек показал, что в 1 м3 воздуха содержится 3949 микроорганизмов, в то время как исходя из данных третьей чашки в воздухе находится 1371 микроорганизм. Таким образом, можно говорить только о тенденции к возрастанию численности микроорганизмов в течение учебного дня.

Таблица 5. Количество микроорганизмов, содержащееся в 1м3 воздуха классного помещения в разные периоды времени:

Класс:	1-ая чашка	2-ая чашка	3-ая чашка	Среднее
До урока	509	637	254	467±113
1 урок	127	382	509	339±112
5 перемена	1910	637	2165	1571±473
6 урок	509	509	891	636±127

Таблица 6. Количество микроорганизмов, содержащееся в в 1м3 воздуха классного помещения в разные периоды времени:

Класс	1-ая чашка	2-ая чашка	3-я чашка	Среднее
До урока	127	127	127	170±42,5
1 урок	382	254	764	467±153
1 перемена	254	891	127	424±236,3
2 урок	254	254	509	340±84,9
2 перемена	509	509	893	637±127,8
3 урок	254	382	382	340±42,4
3 перемена	127	382	893	467±225,1
4 урок	254	127	127	170±42,5
4 перемена	5350	3694	1273	3440±1183,6
5 урок	127	254	509	297±112,4
5 перемена	893	127	764	595±236,1
6 урок	254	891	127	424±236,3
После уроков	891	1146	1401	1146±147,2

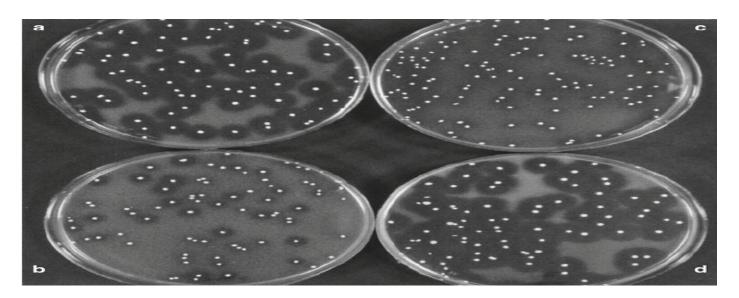
Таблица 7. Количество микроорганизмов, содержащееся в 1м3 воздуха коридора:

Коридор	1-аячашка	2-ая чашка	3-ая чашка	Среднее
До урока	764	0	0	255±254,7
1 перемена	127	637	1019	722±297,2
2 перемена	893	893	382	723±170,3
3 перемена	509	637	1655	934±362,7
4 перемена	3694	1528	2038	2420±653,7
5 перемена	1146	1019	1146	1104±42,5
После уроков	509	509	127	382±127,3

Способ приготовления среды:

36,7 г среды размешать в 1 л дистиллированной воды, кипеть 2- 3 минуты до полного расплавления агара, профильтровать через ватномарлевый фильтр, снова довести до кипения, охладить до t = 46-500С и разлить в стерильные чашки Петри слоем 5-6мм. После застывания среды чашки подсушить при t = 37+1 ОС в течение 40-60 минут.

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри-с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 370С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колонии. Данный метод пригоден для сравнительных оценок чистоты воздуха.


Результаты и Обсуждение

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. Колонии микроорганизмов, выросших на среде ГРМ-агар, представлены на рисунках 2-5. Необходимо отметить, что применение среды Эндо показало отсутствие кишечных палочек в изученных школьных помещениях.

На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня. Полученные результаты представлены в таблицах 3-5.

Рисунок микробиологический анализ:

А-школьной столовой, В-классного кабинета, С-школьного коридора, D-спортзала

Методы исследования:

Для определения степени загрязнения воздуха в закрытых помещения использовалось два вида питательных сред: ГРМ-агара и Агар- Эндо-ГРМ.

Оценка воздуха	Осенний период		Зимний период	
	Всего микроорганизмо в	Санитарно- показательных микроорганизмо в	Всего микроорганизмо в	Санитарно- показательных микроорганизм ов
Чистый	1500	16	4500	36
Грязный	2500	36	7000	124

Выводы:

- 1) Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее классной комнаты.
- 2) Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
- 3) В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
- 4) Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.
- 5) Содержание микроорганизмов в воздухе одних и тех же помещений отличается в разные времена года.

Выполнила: Мурсалимова Карима и Сембаева Улпан Ученицы Школы-Лицей №66 8А класс

Руководитель: Саворовская М.В.

Спасибо за внимание!