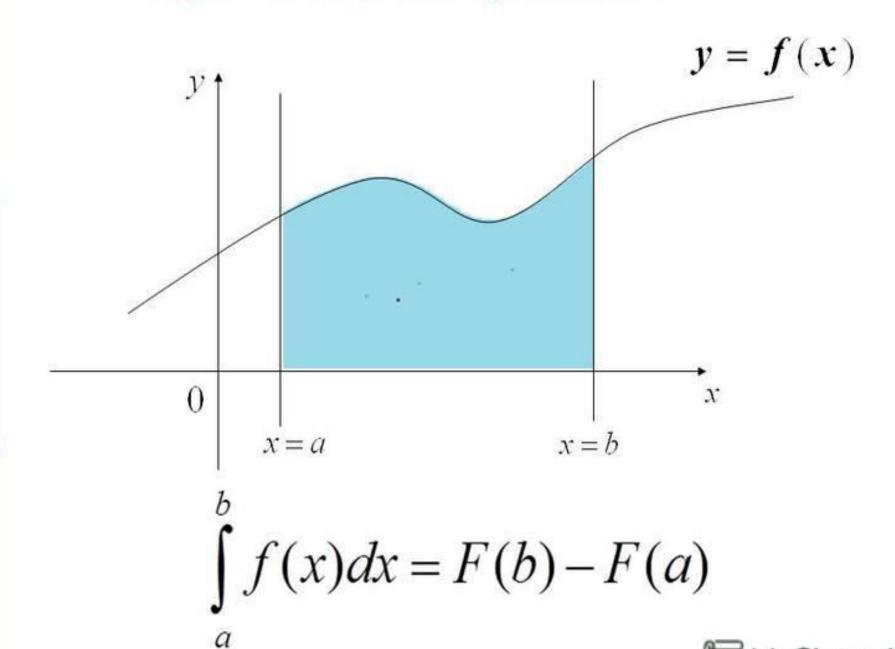
ПРИМЕНЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА В PEHIDAM ГЕОМЕТРИЧЕСКИХ И ФИЗИЧЕСКИХ ЗАДАЧ.

ПЛАН УРОКА

- 1. ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ ПЛОСКИХ ФИГУР С ПОМОЩЬЮ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
- 2. ВЫЧИСЛЕНИЕ ОБЪЁМОВ ТЕЛ ВРАЩЕНИЕ.
- 3. ПРИМЕНЕНИЕ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА В ФИЗИКЕ

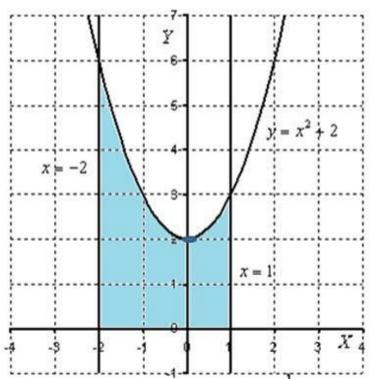
Вычисление площадей плоских фигур с помощью определенного интеграла

Криволинейная трапеция



Пример 1

Вычислить площадь фигуры, ограниченной линиями



$$y = x^{2} + 2$$

$$y = 0$$

$$x = -2$$

$$x = 1$$

$$\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$$

На отрезке [-2,1] график фукции $y = x^2 + 2$ расположен на осью OX

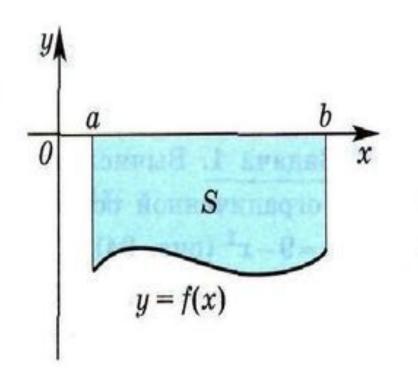
Закрашенная фигура криволинейная трапеция

$$\int_{a}^{b} f(x)dx = F(X)\Big|_{a}^{b} = F(b) - F(a)$$

$$S = \int_{-2}^{1} (x^2 + 2) dx = \left(\frac{x^3}{3} + 2x\right) \Big|_{-2}^{1} = \frac{1}{3} + 2 - \left(-\frac{8}{3} - 4\right) = \frac{1}{3} + 2 + \frac{8}{3} + 4 = 9$$

OTBET:
$$S = 9 e \partial^2$$

Искомая площадь фигуры равна площади фигуры, *симметричной* данной относительно оси Ох

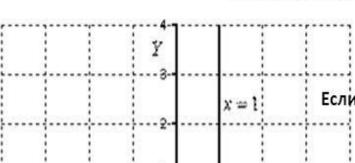


Если $f(x) \leq 0$ на отрезке [a; b], то площадь криволинейной трапеции равна $S = \int (-f(x))dx$

Пример 3 2

Вычислить площадь фигуры, ограниченной линиями

$$y = -e^x$$
 $x = 1$



и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью *OX*

, то её площадь можно найти по формуле:

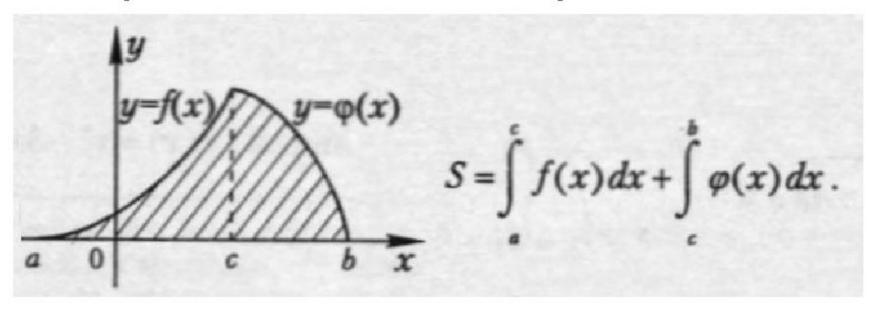
$$S = -\int_{a}^{b} f(x)dx$$

В данном случае:

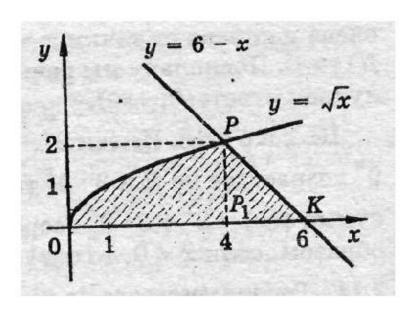
$$S = -\int_{0}^{1} (-e^{x}) dx = \int_{0}^{1} e^{x} dx = e^{x} \Big|_{0}^{1} = e^{1} - e^{0} = e - 1$$

ответ:
$$S = (e-1) e \partial^2 \approx 1,72 e \partial^2$$

Площадь фигуры равна *сумме* площадей криволинейных трапеций



Задача. Найти площадь фигуры, ограниченной линиями $y = \sqrt{x}$, y = 6 - x, y = 0

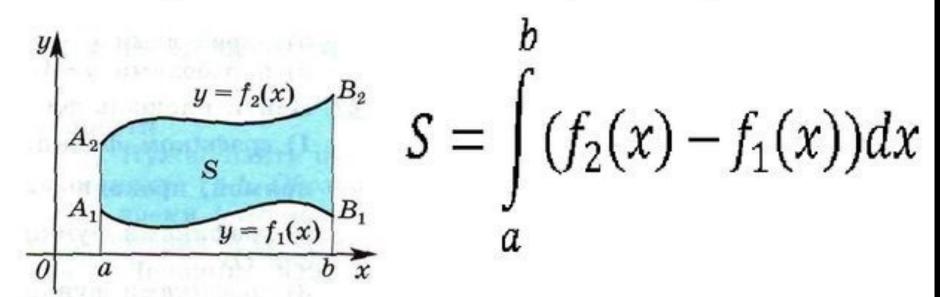


Решение. Точки пересечения заданных линий: O(0;0), K(6;0), P(4;2) Фигура состоит из криволинейной трапеции и прямоугольного треугольника.

$$S_{\Phi$$
игуры = $S_{OPP_1} + S_{\Delta PP_1K}$

$$S_{\Phi \text{игуры}} = \int_{0}^{4} \sqrt{x} \, dx + \frac{1}{2} \cdot 2 \cdot 2 = 7\frac{1}{3}$$

Площадь фигуры равна разност и площадей криволинейных трапеций

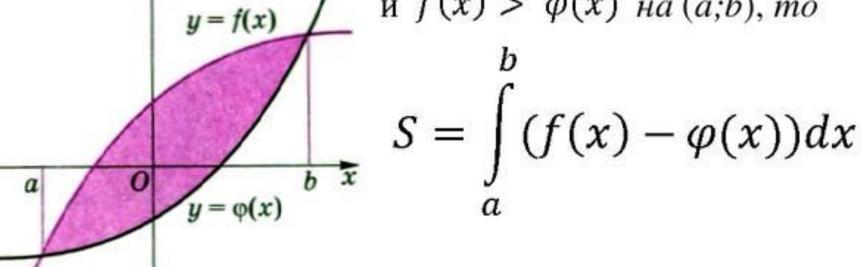


Площадь фигуры вычисляется как *разность* площадей криволинейных трапеций на отрезке [a;b]

Eсли функции y = f(x) и $y = \varphi(x)$

непрерывны на отрезке [a;b]

и $f(x) > \varphi(x)$ на (a;b), то



Пример 4

Найти площадь плоской фигуры, ограниченной линиями

$$y = 2x - x^2$$

$$y = -x$$

Решение: Сначала нужно выполнить чертеж, при построении чертежа в задачах на площадь нас интересуют точки пересечения линий. Найдем точки пересечения параболы $y = 2x - x^2$ y = -x

и прямой Аналитически. Решаем уравнение:

авнение:
$$2x - x^2 = -x$$

$$3x - x^2 = 0$$
$$x(3 - x) = 0$$

$$x(3-x)=0$$

$$x_1 = 0, x_2 = 3$$

: Если на отрезке

интегрирования a = 0, верхний предел b = 3интегрирования

некоторая непрерывная

Значит, нижний предел

Если на отрезке
$$\begin{bmatrix} a,b \end{bmatrix}$$
 функция $f(x)$ больше либо равна некоторой непрерывной функции

[0;3]

, то площадь соответствующей фигуры можно найти по формуле:

на отрезке
$$[0;3]$$
 парабола располагается выше прямой, а поэтому

Ha

отрезке

$$y = 2x - x^2$$
 сверху и прямой $y = -x$ снизу.

поэтому
$$\begin{bmatrix} 2x - x^2 & \text{необходимо} \\ & \text{вычесть} & - \end{bmatrix}$$

(f(x) - g(x))dx

то соответствующей
$$y=2$$
 формуле:

$$= \frac{9}{2} = 4\frac{1}{2} \text{ кв. ед}$$
 $0 + 0 - \frac{72}{5} - \frac{72}{2} = \frac{8}{3} \left(\frac{x^2}{5} - \frac{x^2}{2} \right) = xb(^2x - xE) \frac{1}{3} = xb((x-)x^2 - xE) \frac{1}{3} = 2$

Искомая фигура

Пример 4

Найти площадь плоской фигуры, ограниченной линиями

Решение: Сначала нужно выполнить чертеж, при построении чертежа в задачах на площадь нас интересуют точки пересечения линий. Найдем точки пересечения параболы
$$y=2x-x^2$$
 и прямой $y=-x$ Аналитически. Решаем уравнение: $2x-x^2=-x$ $3x-x^2=0$ интегрирования $a=0$, верхний предел интегрирования $b=3$ $x(3-x)=0$ $x_1=0, x_2=3$ некоторая непрерывная $x=0$ больше либо равна некоторой непрерывной функции то площадь соответствующей фигуры $y=2x-x^2$

g(x)

можно найти по формуле:

(f(x) - g(x))dxвыше прямой, а поэтому

Искомая фигура ограничена параболой
$$y = 2x - x^2$$
 сверху и прямой $y = -x$ снизу

необходимо

вычесть

 $\alpha = 0$

, по соответствующей формуле:

Искомая фигура

 $\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$

Ha

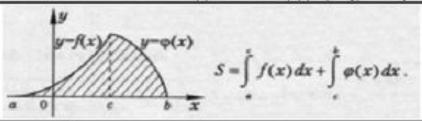
отрезке

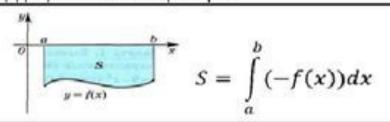
 $2x - x^2 \ge -x$ 0;3

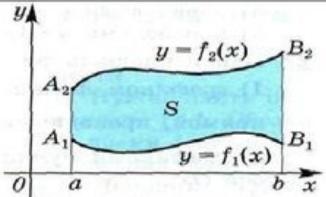
 $2x-x^2$

$$S = \int_{0}^{3} (2x - x^{2} - (-x))dx = \int_{0}^{3} (3x - x^{2})dx = \left(\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right)\Big|_{0}^{3} = \frac{27}{2} - \frac{27}{3} - 0 + 0 = \frac{9}{2} = \frac{1}{2}$$

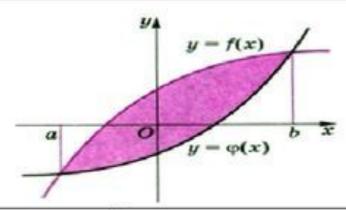
Нахождение площади фигуры, через площадь криволинейной трапеции







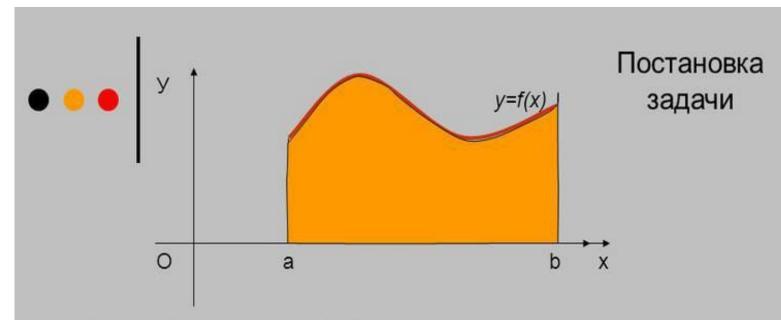
$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx$$



$$S = \int_{a}^{b} (f(x) - \varphi(x)) dx$$

Вычисление объемов тел вращения

Применение интеграла



Пусть функция y = f(x) определена, неотрицательна и непрерывна на отрезке [a; b], тогда график кривой y=f(x) на [a; b], ось ОХ, прямые x = a, x = b образуют криволинейную трапецию.

Рассмотрим тело, образованное вращением этой криволинейной трапеции вокруг оси ОХ и найдем его объем.

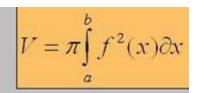
Тогда объем тела вращения вокруг оси ОХ:

$$V = \int_{a}^{b} S(x)\partial x = \int_{a}^{b} \pi \cdot f^{2}(x)\partial x = \pi \int_{a}^{b} f^{2}(x)\partial x$$

о Если тело образовано вращением криволинейной трапеции, образованной функцией y=f(x) на отрезке [a;b],вокруг оси ОХ, то его объём можно найти по

формуле: у ф х

$$V = \pi \int_{a}^{b} f^{2}(x) \partial x$$
MyShare



Задача.

Пусть тело образовано вращением параболы $y=x^2$ на отрезке [0;2] вокруг оси ОХ.

Найдите объём тела вращения.

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

$$V = \int_{0}^{2} S(x) \partial x = \int_{0}^{2} \pi \cdot (x^{2})^{2} \partial x =$$

Применение определённого интеграла в физике

Рассмотрим решение задачи на перемещение материальной точки

Предположим, что точка движется по прямой (по оси ОХ) и нам известна скорость этой точки. Перемещение точки по оси будем считать функцией времени: s=s(t). Как найти перемещение точки за промежуток времени $[t_1; t_2]$?

Известно: V(t) = S'(t)

Тогда перемещение равно:

$$S = \int_{t_1}^{t_2} \upsilon(t) dt$$

$$S = \int_{t_1}^{t_2} v(t) dt$$

Рассмотрим пример:

Материальная точка движется со скоростью:

$$v\left(t\right)=3t^{3}+2t+1$$

Вычислить перемещение за промежуток времени [1;2] секунды

$$S = \int_{1}^{2} (3t^{2} + 2t + 1)dt = (3\frac{t^{3}}{3} + 2\frac{t^{2}}{2} + t)\Big|_{1}^{2} =$$

$$= (8+4+2) - (1+1+1) = 11$$

Ответ: перемещение 11метров

Величины	Вычисление производной	Вычисление интеграла
A – работа; F – сила; N – мощность	F(x) = A'(x); $N(t) = A'(t).$	$A = \int_{x_1}^{x_2} F(x)dx;$ $A = \int_{t_1}^{t_2} N(t)dt.$
 m – масса тонкого стержня; ρ – линейная плотность 	$\rho(x)=m'(x).$	$m = \int_{x_1}^{x_2} \rho(x) dx$
q – электрический заряд;I – сила тока	I(t)=q'(t).	$q = \int_{t_1}^{t_2} I(t)dt$
S — перемещение; υ — скорость	$\upsilon(t)=S'(t).$	$S = \int_{t_1}^{t_2} \upsilon(t) dt$
Q — количество теплоты; c — теплоёмкость	c(t) = Q'(t).	$Q = \int_{t_1}^{t_2} c(t)dt$