ПЕРВОЕ НАЧАЛО ТЕРМОДИНА-МИКИ II

Домашнее задание

2.33.
$$AU = \frac{1}{8^{-1}} \Delta |PV| = \frac{1}{8^{-1}} (PPV_1 - P2V_2 \cdot T_1) = \frac{P3V_1}{7^{-1}} = -A$$

2.41. $\Delta U = \frac{1}{8^{-1}} \Delta |PV| = \frac{P}{1 \cdot 8} \Delta V$, $A = PAV$, $A = Q \cdot \Delta U + \Delta A \cdot 2 \times PAV$

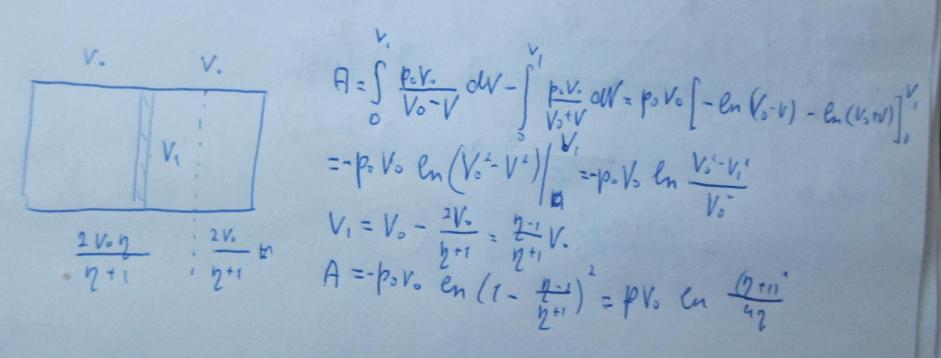
2.42. $\Delta U = VC_1 \Delta T = 0$, $A \cdot VRT = \frac{V}{V_1} \cdot P_1 \cdot V_2 \cdot \frac{V}{V_2} = Q$

2.43. $Q = VC_1 \Delta T = 0$, $C_1 = \frac{Q}{V_1 \Delta T} \cdot V_2 \cdot \frac{Q}{V_2 \Delta T}$, $\Delta U = \frac{\Delta PV}{8^{-1}} \cdot \frac{Q}{8} = Q \cdot VR\Delta T$

2.44. $\Delta U = VRAT = 0$, $\Delta U = VRAT = 0$, $\Delta U = \Delta U = VR\Delta T$, $\Delta U = \Delta U = VR\Delta T$

2.44. $\Delta U = VRAT = 0$, $\Delta U = VR\Delta T = 0$, $\Delta U = \Delta U = VR\Delta T = 0$

2.54. $\Delta U = VRAT = 0$, $\Delta U = \Delta U = VR\Delta T = 0$


2.54. $\Delta U = VRAT = 0$, $\Delta U = \Delta U = VR\Delta T = 0$

2.55. $\Delta U = \Delta U + VR\Delta T = 0$, $\Delta U = \Delta U = VR\Delta T = 0$
 $\Delta U = \Delta U + A = \frac{1}{8^{-1}} \Delta PV + \frac{P^{-1}}{2} \Delta V$
 $\Delta U = \Delta U + A = \frac{1}{8^{-1}} \Delta PV + \frac{P^{-1}}{2} \Delta V$

Проверочная работа

6.35. Внутри закрытого с обоих концов горизонтального цилиндра находится легкоподвижный поршень. Первоначально поршень делит цилиндр на две равные части, каждая объемом V_0 , в которых находится идеальный газ одинаковой температуры и под одним и тем же давлением p_0 . Какую работу необходимо совершить, чтобы, медленно двигая поршень, изотермически увеличить объем одной части газа в η раз по сравнению с объемом другой части?

6.35. Внутри закрытого с обоих концов горизонтального цилиндра находится легкоподвижный поршень. Первоначально поршень делит цилиндр на две равные части, каждая объемом V_0 , в которых находится идеальный газ одинаковой температуры и под одним и тем же давлением p_0 . Какую работу необходимо совершить, чтобы, медленно двигая поршень, изотермически увеличить объем одной части газа в η раз по сравнению с объемом другой части?

6.30. Один моль некоторого идеального газа изобарически нагрели на $\Delta T=72$ K, сообщив ему количество тепла Q=1,60 кДж. Найти приращение его внутренней энергии и величину $\gamma=C_p/C_V$.

• Повторяет С 2.43 из домашнего задания

6.30. Один моль некоторого идеального газа изобарически нагрели на $\Delta T=72$ K, сообщив ему количество тепла Q=1,60 кДж. Найти приращение его внутренней энергии и величину $\gamma=C_p/C_V$.

6.32. Вычислить γ для газовой смеси, состоящей из $v_1 = 2.0$ моль кислорода и $v_1 = 3.0$ моль углекислого газа. Газы считать идеальными.

6.32. Вычислить γ для газовой смеси, состоящей из $v_1=2,0$ моль кислорода и $v_1=3,0$ моль углекислого газа. Газы считать идеальными.

6.34. В вертикальном цилиндре под невесомым поршнем находится один моль некоторого идеального газа при температуре Т. Пространство нал поршнем сообщается с атмосферой. Какую работу необходимо совершить, чтобы, медленно поднимая поршень, изотермически увеличить объем газа под ним в n раз? Трения нет. 6.34. В вертикальном цилиндре под невесомым поршнем намодится один моль некоторого идеального газа при температуре Т. Пространство над поршнем сообщается с атмосферой. Какую работу необходимо совершить, чтобы, медленно поднимая поршень, изотермически увеличить объем газа под ним в n раз? Трения нет.

6.38. Некоторую массу азота сжали в $\eta = 5.0$ раз (по объему один раз адиабатически, другой раз изотермически. Начальное состояние газа в обоих случаях одинаково. Найти отношение соответствующих работ, затраченных на сжатие.

6.38. Некоторую массу азота сжали в $\eta = 5.0$ раз (по объему) один раз адиабатически, другой раз изотермически. Начальное состояние газа в обоих случаях одинаково. Найти отношение соответствующих работ, затраченных на сжатие.

$$A_{T} = VRTen p, A_{S} = \int pdV = poVo^{S} \int dV = \frac{2Vo}{V^{S}} = \frac{poVo^{S}}{1-8} \left[V^{1-8} \right]^{2Vo} = \frac{poVo^{S}}{1-8} \left[V^{1-8} \right]^{2Vo} = \frac{poVo^{S}}{1-8} \left[V^{1-8} \left(v^{1-8} \right) \right]^{\frac{1}{2}} = \frac{poVo}{V^{S}} \left[v^{1-8} \left(v^{1-8} \right) \right]^{\frac{1}{2}} = \frac{poVo}{V^{S}} \left[v^{1-8} \left(v^{1-8} \right) \right]^{\frac{1}{2}}$$

Уравнение политропы

$$VCOUT = VCVOUT + pOUV$$
 $V(CV-C)OUT + pOUV = 0$
 $pV = VRT \Rightarrow VOUT = pouV + VOUP$
 $(CV-C)(pOUV + VOUP) + RpoUV = 0$
 $(CV+R-C)pOUV + (CV-C)VOUP = 0$
 $(CV+R-C)pOUV + (CV-C)VOUP = 0$

$$\frac{(C_{p}-c)}{V} + \frac{dV}{(c_{r}-c)} \frac{dP}{P} = 0$$

$$\frac{C_{p}-c}{C_{r}-c} \frac{dV}{V} + \frac{dP}{V} = 0$$

$$n(c-v_0) = c-cp$$
, $c(n-1) = ncv-cp =$
 $= ncv - (cv+R) = (n-1)cR$; $c=cv-\frac{R}{n-1} = \frac{R}{r-1} - \frac{R}{n-1}$
 $c < 0$, $npm \ n \in [1, T]$

6.42. Объем моля идеального газа с показателем адиабаты γ изменяют по закону V=a/T, где a — постоянная. Найти количество тепла, полученное газом в этом процессе, если его температура испытала приращение ΔT .

6.42. Объем моля идеального газа с показателем адиабаты γ изменяют по закону V=a/T, где a — постоянная. Найти количество тепла, полученное газом в этом процессе, если его температура испытала приращение ΔT .

$$PV = VRT|_{T=Q/V} = VRQ = > PV^2 = VRQ$$
 $N = 2 \Rightarrow \frac{C_P - C}{C_V - C} = 2$, $2C_V = 2C = C_P - C$
 $C = 2C_V - C_P = C_V - R = > Q = CAT = (C_V - R_V)AT$

- 6.49. Один моль идеального газа с показателем адиабаты γ совершает процесс, при котором его давление $p \infty T^{\alpha}$, где α
- постоянная. Найти: а) работу, которую произведет газ, если его температура испытает приращение ΔT ;
- б) молярную теплоемкость газа в этом процессе; при каком значении α теплоемкость будет отрицательной?

- 6.49. Один моль идеального газа с показателем адиабаты γ совершает процесс, при котором его давление $p \sim T^{\alpha}$, где α постоянная. Найти:
- а) работу, которую произведет газ, если его температура испытает приращение $\Delta T;$
- б) молярную теплоемкость газа в этом процессе; при каком значении α теплоемкость будет отрицательной?

$$P \sim T^{2}$$
, $T \sim P^{1/2}$, $PV = VRT |_{T=CP^{1/2}} =)RCP^{1/2}$
 $P^{1-1/2}V = VRC$, $PV \stackrel{\sim}{=} = (VRC) \stackrel{\sim}{=} = 0$
 $C = E_{V} - \frac{R}{2} = C_{V} - (X-1)R = C_{V} + (1-2)R$
 $Q = C\Delta T = [C_{V} + (1-2)R]\Delta T = C_{V}\Delta T + A$
 $A = (1-2)R\Delta T$