-

Learn Python

In three hours

Some material adapted L
from Upenn cmpe391

slides and other sources

Overview

- History

- Installing & Running Python

- Names & Assignment

- Sequences types: Lists, Tuples, and
Strings

- Mutabillity

Brief History of Python

* Invented in the Netherlands, early 90s
by Guido van Rossum

- Named after Monty Python
»+ Open sourced from the beginning

- Considered a scripting language, but is
much more

- Scalable, object oriented and functional
from the beginning

- Used by Google from the beginning
* Increasingly popular

Python’s Benevolent Dictator For Life

“Python 1s an experiment in
how much freedom
program-mers need. Too
much freedom and nobody can
read another's code; too little
and expressive-ness 1s
endangered.”

- Guido van Rossum

http://docs.python.or

® 00 Overview — Python v2.6.1 documentation
AlA :.. http://docs.python.org/ Q- Google

documenfation » modules | index =

Download Python v2.6.1 documentation

Download these documents
Welcome! This is the documentation for Python 2.6.1, last updated Jan 29, 2009.

Other resources

Parts of the documentation:
FAQs
Introductions
Guido's Essays 2
New-style Classes What's new in Python 2.6?
PEP Index ") " ; < .
Beginner's Guide AR ODg Y 00 20 Extending and Embedding
Topic Guides . :
Book List Tutorial tutorial for C/C++ programmers
Audio/Visual Talks
Other Doc Collections s Python/C API
Dravios vorsions Usin g Pyth on reference for C/C++ programmers

how to use Python on different piatforms

Installing Python Modules

Quick search Language R eference information for installers & sys-admins

_ m describes syntax and language elements Distributin g Pyth on Modules

sharing modules with others

Enter search terms or a module,

class or function name. Library Reference
keep this under your pillow

Documenting Python

Pyth on HOWTOs guide for documentation authors
in-depth documents on specific topics

Indices and tables:

Global Module Index

quick access to all modules Search page

General Index search this documentation

all functions, classes, terms C o) mp' ete Table Of C ontents

lists all sections and subsections

Glossary

the most important terms explained

The Python tutorial is good!

The Python Tutorial — Python v2.6.1 documentation

(<] (c] AlA]

Previous topic

What’s New in
Python 2.0

Next topic

Whetting Your
Appetite

This Page

Show Source

Quick search

Enter search terms or a
modaule, class or function
name.

= Python v2.6.1 documentation »

Lot http://docs.python.org/tutorial/index.htm| Q ;er Google

The Python Tutorial

Release: 2.6
Date: January 04, 2009

Python is an easy to learn, powerful programming language. It has efficient high-
level data structures and a simple but effective approach to object-oriented
programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in
source or binary form for all major platforms from the Python Web site,
http://www.python.org/, and may be freely distributed. The same site also contains
distributions of and pointers to many free third party Python modules, programs and
tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types
implemented in C or C++ (or other languages callable from C). Python is also
suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of
the Python language and system. It helps to have a Python interpreter handy for
hands-on experience, but all examples are self-contained, so the tutorial can be
read off-line as well.

For a description of standard objects and modules, see the Python Library

)

previous | next | modules | index

The Python Interpreter

- Typical Python implementations offer
both an interpreter and compiler

- Interactive interface to Python with a
read-eval-print loop

[finin@linux2 ~]$ python

Python 2.4.3 (#1, Jan 14 2008, 18:32:40)

[GCC 4.1.2 20070626 (Red Hat 4.1.2-14)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> def square(x):
. return x * x

>>> map(square, [1, 2, 3, 4])
[1,4,9, 16]

>>>

Installing

- Python is pre-installed on most Unix systems,
including Linux and MAC OS X

- The pre-installed version may not be the most
recent one (2.6.2 and 3.1.1 as of Sept 09)

- Download from http://python.org/download/

- Python comes with a large library of standard
modules

- There are several options for an IDE

* IDLE — works well with Windows

« Emacs with python-mode or your favorite text editor
 Eclipse with Pydev (http://pydev.sourceforge.net/)

IDLE Developm

- IDLE is an Integrated
Environ-ment for Pyth
Windows

ent Environment

DevelLopment
on, typically used on

» Multi-window text editor with syntax
highlighting, auto-completion, smart indent

and other.
- Python shell with synt
- Integrated debugger

with stepping, persis- |-

tent breakpoints,
and call stack visi-
bility

File Edit Shell Debug Options MWindows Help

**

makes to its subprocess using this computer’'s internal loopback
interface. This connection is not wvisible on any external

**

[[[[[

Ln: 20|Col: 34

Editing Python in Emacs

- Emacs python-mode has good support for editing
Python, enabled enabled by default for .py files

- Features: completion, symbol help, eldoc, and inferior
Interpreter shell, etc.

® 00 Terminal — ssh — 80x23

File Edit Options Buffers Tools IM-P
! fusr/bin/python
primes N will print the primes <= N

from math import sqgrt
from sys import argv

if len(argv) < 2:
print "usage: primes N"
exit()

else:
max = int(argvil])

def is prime(n):
"""is prime(n) returns True if n is a prime number"""
for i in range(2, l+sqgrt(n)):
if 0 == n % i:
return False
return True m

for n in range(l,max): i

Mark set

Running Interactively on UNIX

On Unix...
% python
>>> 343
6
* Python prompts with >>>’,
* To exit Python (not Idle):
* In Unix, type CONTROL-D
* In Windows, type CONTROL-Z + <Enter>
 Evaluate exit()

Running Programs on UNIX

- Call python program via the python interpreter

®)

% python fact.py
- Make a python file directly executable by

* Adding the appropriate path to your python
interpreter as the first line of your file

#!/usr/bin/python
» Making the file executable

©)

% chmod a+x fact.py
* Invoking file from Unix command line

©)

s fact.py

Example ‘script’: fact.py

#! /usr/bin/python
def fact(x):

"""Returns the factorial of its argument, assumed to be a posint™
if x ==0:

return 1
return x * fact(x - 1)

print
print ‘N fact(N)’
print ".________ n

for n in range(10):
print n, fact(n)

Python Scripts

- When you call a python program from the
command line the interpreter evaluates each
expression in the file

- Familiar mechanisms are used to provide
command line arguments and/or redirect input
and output

- Python also has mechanisms to allow a
python program to act both as a script and as
a module to be imported and used by another
python program

Example of a Script

#! /usr/bin/python

reads text from standard input and outputs any email
addresses it finds, one to a line.

import re
from sys import stdin

a regular expression ~ for a valid email address
pat = re.compile(r'[-\w][-.\w]*@[-\w][-\w.]+[a-zA-Z]{2,4}")

for line in stdin.readlines():
for address in pat.findall(line):
print address

results

python> python email0.py <email.txt
bill@msft.com

gates@microsoft.com
steve@apple.com

bill@msft.com

python>

Getting a unique, sorted list

import re
from sys import stdin

pat = re.compile(r'[-\w][- \w]*@[-\w][-\w.]+[a-zA-Z]{2,4})
found is an initially empty set (a list w/o duplicates)
found = set()
for line in stdin.readlines():

for address in pat.findall(line):

found.add(address)

sorted() takes a sequence, returns a sorted list of its elements
for address in sorted(found):

print address

results

python> python email2.py <email.txt
bill@msft.com

gates@microsoft.com
steve@apple.com

python>

Simple functions: ex.py

"""factorial done recursively and iteratively"""

def factl(n):
ans = 1
for 1 1n range(2,n):
ans = ans * n

return ans

def fact2(n):
1f n < 1:
return 1
else:
return n * fact2(n - 1)

Simple functions: ex.py

671> python

Python 2.5.2 ..

>>> 1mport ex

>>> ex.factl (6)

1296

>>> ex.fact2(200)

78865786736479050355236321393218507..000000L

>>> ex.factl

<function factl at 0x902470>

>>> factl

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'factl' is not defined

The Basics

A Code Sample (in IDLE)

X=34-23 # A comment.

y = “Hello” # Another one.

z = 3.45

it z==3.45 or y == "Hello":
X=X+ 1

y =y + “World” # String concat.
print X

printy

Enough to Understand the Code

* Indentation matters to code meaning
* Block structure indicated by indentation

 First assighment to a variable creates it
* Variable types don’t need to be declared.
 Python figures out the variable types on its own.

- Assignment is = and comparison is ==
 For numbers + - */ % are as expected

- Special use of + for string concatenation and % for
string formatting (as in C’s printf)

- Logical operators are words (and, or,
not) not symbols

* The basic printing command is print

Basic Datatypes

* Integers (default for numbers)
z=5/2 # Answer 2, integer division
* Floats
X = 3.456

 Strings
« Can use “” or to specify with “abc” == ‘abc’
« Unmatched can occur within the string: “matt’s”

» Use triple double-quotes for multi-line strings or

strings than contain both “ and “ inside of them:
H““a‘bﬂcﬂﬂﬂ

(13})

Whitespace

Whitespace is meaningful in Python: especially
indentation and placement of newlines
‘Use a newline to end a line of code
Use \ when must go to next line prematurely
‘No braces {} to mark blocks of code, use
consistent indentation instead
* First line with /less indentation is outside of the block
 First line with more indentation starts a nested block

‘Colons start of a new block in many constructs,
e.g. function definitions, then clauses

Comments

- Start comments with #, rest of line is ignored

- Can include a "documentation string” as the
first line of a new function or class you define

- Development environments, debugger, and
other tools use it: it's good style to include one

(n) :
“WWfact(n) assumes n 1s a positive
integer and returns facorial of n.”””
assert (n>0)

return 1 1f n==1 else n*fact(n-1)

Assignment

Binding a variable in Python means setting a name to
hold a reference to some object

« Assignment creates references, not copies
Names in Python do not have an intrinsic type,
objects have types

« Python determines the type of the reference automatically
based on what data is assigned to it

You create a name the first time it appears on the left

side of an assignment expression:
X =3

A reference is deleted via garbage collection after any
names bound to it have passed out of scope

Python uses reference semantics (more later)

Naming Rules

- Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.

bob Bob bob 2 bob bob 2 BoB

 There are some reserved words:

and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, 1f,
import, in, 1s, lambda, not, or,
pass, print, raise, return, try,
while

Naming conventions

The Python community has these
recommend-ed naming conventions

joined_lower for functions, methods and,
attributes
joined_lower or ALL_CAPS for constants

StudlyCaps for classes

-camelCase only to conform to pre-existing
conventions

-Attributes: interface, internal, _ private

Assignment

-You can assign to multiple names at the
same time

>>> x, y = 2, 3

>>> X

2

>>> vy

3

This makes it easy to swap values
>>> X, y =Y, X

-Assignments can be chained
>>> a = b = x = 2

Accessing Non-Existent Name

Accessing a name before it's been properly
created (by placing it on the left side of an
assignment), raises an error

>>> vy

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
%
NameError: name ‘y' 1s not defined
>>> y = 3
>>> vy
3

Sequence types:
Tuples, Lists, and
Strings

r

A Y

Sequence Types
1. Tuple: (john’, 32, [CMSC])

- A simple immutable ordered sequence of
items

- Items can be of mixed types, including
collection types

2. Strings: “John Smith”
* Immutable
» Conceptually very much like a tuple
4. List: [1, 2, ‘john’, (‘up’, ‘down’)]
- Mutable ordered sequence of items of
mixed types

Similar Syntax

- All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

- Key difference:
* Tuples and strings are immutable
 Lists are mutable

- The operations shown in this section
can be applied to all sequence types

* most examples will just show the
operation performed on one

Sequence Types 1

- Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

- Define lists are using square brackets and

commas
>>> 11 = [“abc”, 34, 4.34, 23]

- Define strings using quotes (°, °, or “).

>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “WW“This 1s a multi-line

nrrr

string that uses triple quotes.

Sequence Types 2

- Access individual members of a tuple, list, or
string using square bracket “array” notation

- Note that all are 0 based...

>>> tu = (23, ‘abc’, 4.506, (2,3), ‘def’)

>>> tull] # Second item in the tuple.
‘abe!

>>> 1i = [Y“abc”, 34, 4.34, 23]

>>> 13i[1] # Second item in the list.
34

>>> st = “Hello World”
>>> st [1] # Second character in string.
\el

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with O
>>> t[1]
‘abc’

Negative index: count from right, starting with —1
>>> t[—-3]

4.50

Slicing: return copy of a subset

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Return a copy of the container with a subset of
the original members. Start copying at the first
index, and stop copying before second.

>>> t[1:4]

(‘abc’, 4.506, (2,3))
Negative indices count from end

>>> t[1l:-1]

(‘abc’, 4.506, (2,3))

Slicing: return copy of a =subset

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Omit first index to make copy starting from
beginning of the container

>>> t[:2]

(23, ‘abc’)
Omit second index to make copy starting at first
index and going to end

>>> t[2:]

(4.56, (2,3), ‘detf’)

Copying the Whole Sequence

- [:] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.56, (2,3), ‘def’)

- Note the difference between these two lines
for mutable sequences

>>> 12 = 11 # Both refer to 1 ref,

changing one affects both

>>> 12 = 11[:] # Independent copies, two
refs

The ‘in’ Operator

- Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 1in t
True
>>> 4 not 1n t
False
- For strings, tests for substrings
>>> a = 'abcde'
>>> 'c¢' in a
True
>>> 'cd' 1in a
True
>>> 'ac' 1in a
False

- Be careful: the in keyword is also used in the syntax
of for loops and list comprehensions

The + Operator

The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 0)
(11 2/ 3/ 4/ 5/ 6)

>>> [1, 2, 31 + [4, 5, 6]
[11 2/ 3/ 4/ 5/ 6]

>>> \\Helloll _I_ \\ 144 _I_ \\Worldll
‘Hello World’

The * Operator

- The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(11 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3)

>>> [1, 2, 3] * 3

>>> “Hello” * 3
‘HelloHelloHello!

Mutability:
Tuples vs. Lists

\ 4 \\/

&

Lists are mutable

>>> 11 = [‘abc’, 23, 4.34, 23]
>>> 1i[1] = 45
>>> 11

[‘abc’, 45, 4.34, 23]

- We can change lists in place.

- Name /i still points to the same memory
reference when we’re done.

Tuples are immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-
tul[2] = 3.14

TypeError: object doesn't support i1tem assignment

‘You can't change a tuple.

‘You can make a fresh tuple and assign its
reference to a previously used name.
>>> t = (23, ‘abce’, 3.14, (2,3), ‘def’)

-The immutability of tuples means they’re faster
than lists.

Operations on Lists Only

>>> 11 = [1, 11, 3, 4, 5]

>>> 1i.append(‘'a’) # Note the method
syntax

>>> 113
[11 11/ 3/ 4/ 5/ ‘a,]

>>> li.insert (2, ‘i')
>>>11
(1, 11, ‘i’, 3, 4, 5, ‘a’]

The extend method vs +

-+ creates a fresh list with a new memory ref
-extend operates on list 1i In place.

>>> 1i.extend ([9, 8, 7])
>>> 17

I::I-I 2/ ‘i’I 3/ 4/ 5/ ‘a’I 9/ 8/ 7:|

- Potentially confusing:
» extend takes a list as an argument.
* append takes a singleton as an argument.
>>> 11.append([10, 11, 12])
>>> 11

I::I-I 2/ ‘j-,I 3/ 4/ 5/ ‘a,I 9/ 8/ 7/ I::I-OI
11, 127]

Operations on Lists Only

Lists have many methods, including index, count,
remove, reverse, sort

>>> 11 = [‘a’, ‘b'", ‘c¢’', ‘b’]

>>> 1i.1index(‘b’) # index of 1°% occurrence
1

>>> 1i.count (‘'b’) # number of occurrences
2

>>> 1li.remove (‘b’) # remove 1°% occurrence
>>> 11

[\aI, \CI, \b/]

Operations on Lists Only

>>> 11 = [5, 2, o6, 8]
>>> 1i.reverse () # reverse the list *in place*
>>> 117

(8, 6, 2, 5]
>>> 1i.sort () # sort the list *in place*
>>> 11

(2, 5, 6, 8]

>>> li.sort (some function)
sort in place using user-defined comparison

Tuple details

- The comma is the tuple creation operator, not parens

>>> 1,
(1,)
- Python shows parens for clarity (best practice)

>>>(1J
(1)
- Don't forget the comma!

>>>(1)
1

- Trailing comma only required for singletons others
- Empty tuples have a special syntactic form

>>>()

()

>>> tuple()

()

Summary: Tuples vs. Lists

- Lists slower but more powerful than tuples

* Lists can be modified, and they have lots of
handy operations and mehtods

* Tuples are immutable and have fewer
features

- To convert between tuples and lists use the
list() and tuple() functions:

11 = list (tu)
tu tuple(1l1)

