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Overview

- History

- Installing & Running Python

- Names & Assignment

- Sequences types: Lists, Tuples, and
Strings

- Mutabillity



Brief History of Python

* Invented in the Netherlands, early 90s
by Guido van Rossum

- Named after Monty Python
»+ Open sourced from the beginning

- Considered a scripting language, but is
much more

- Scalable, object oriented and functional
from the beginning

- Used by Google from the beginning
* Increasingly popular



Python’s Benevolent Dictator For Life

“Python 1s an experiment in
how much freedom
program-mers need. Too
much freedom and nobody can
read another's code; too little
and expressive-ness 1s
endangered.”

- Guido van Rossum
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The Python Interpreter

- Typical Python implementations offer
both an interpreter and compiler

- Interactive interface to Python with a
read-eval-print loop

[finin@linux2 ~]$ python

Python 2.4.3 (#1, Jan 14 2008, 18:32:40)

[GCC 4.1.2 20070626 (Red Hat 4.1.2-14)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> def square(x):
. return x * x

>>> map(square, [1, 2, 3, 4])
[1,4,9, 16]

>>>



Installing

- Python is pre-installed on most Unix systems,
including Linux and MAC OS X

- The pre-installed version may not be the most
recent one (2.6.2 and 3.1.1 as of Sept 09)

- Download from http://python.org/download/

- Python comes with a large library of standard
modules

- There are several options for an IDE

* IDLE — works well with Windows

« Emacs with python-mode or your favorite text editor
 Eclipse with Pydev (http://pydev.sourceforge.net/)



IDLE Developm
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Windows
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Editing Python in Emacs

- Emacs python-mode has good support for editing
Python, enabled enabled by default for .py files

- Features: completion, symbol help, eldoc, and inferior
Interpreter shell, etc.

® 00 Terminal — ssh — 80x23

File Edit Options Buffers Tools IM-P
! fusr/bin/python
# primes N will print the primes <= N

from math import sqgrt
from sys import argv

if len(argv) < 2:
print "usage: primes N"
exit()

else:
max = int(argvil])

def is prime(n):
"""is prime(n) returns True if n is a prime number"""
for i in range(2, l+sqgrt(n)):
if 0 == n % i:
return False
return True m

for n in range(l,max): i

Mark set




Running Interactively on UNIX

On Unix...
% python
>>> 343
6
* Python prompts with >>>’,
* To exit Python (not Idle):
* In Unix, type CONTROL-D
* In Windows, type CONTROL-Z + <Enter>
 Evaluate exit()



Running Programs on UNIX

- Call python program via the python interpreter

®)

% python fact.py
- Make a python file directly executable by

* Adding the appropriate path to your python
interpreter as the first line of your file

#!/usr/bin/python
» Making the file executable

©)

% chmod a+x fact.py
* Invoking file from Unix command line

©)

s fact.py



Example ‘script’: fact.py

#! /usr/bin/python
def fact(x):

"""Returns the factorial of its argument, assumed to be a posint™
if x ==0:

return 1
return x * fact(x - 1)

print
print ‘N fact(N)’
print ".________ n

for n in range(10):
print n, fact(n)



Python Scripts

- When you call a python program from the
command line the interpreter evaluates each
expression in the file

- Familiar mechanisms are used to provide
command line arguments and/or redirect input
and output

- Python also has mechanisms to allow a
python program to act both as a script and as
a module to be imported and used by another
python program



Example of a Script

#! /usr/bin/python

reads text from standard input and outputs any email
addresses it finds, one to a line.

import re
from sys import stdin

# a regular expression ~ for a valid email address
pat = re.compile(r'[-\w][-.\w]*@[-\w][-\w.]+[a-zA-Z]{2,4}")

for line in stdin.readlines():
for address in pat.findall(line):
print address



results

python> python email0.py <email.txt
bill@msft.com

gates@microsoft.com
steve@apple.com

bill@msft.com

python>



Getting a unique, sorted list

import re
from sys import stdin

pat = re.compile(r'[-\w][- \w]*@[-\w][-\w.]+[a-zA-Z]{2,4})
# found is an initially empty set (a list w/o duplicates)
found = set()
for line in stdin.readlines():

for address in pat.findall(line):

found.add(address)

# sorted() takes a sequence, returns a sorted list of its elements
for address in sorted(found):

print address



results

python> python email2.py <email.txt
bill@msft.com

gates@microsoft.com
steve@apple.com

python>



Simple functions: ex.py

"""factorial done recursively and iteratively"""

def factl(n):
ans = 1
for 1 1n range(2,n):
ans = ans * n

return ans

def fact2(n):
1f n < 1:
return 1
else:
return n * fact2(n - 1)



Simple functions: ex.py

671> python

Python 2.5.2 ..

>>> 1mport ex

>>> ex.factl (6)

1296

>>> ex.fact2(200)

78865786736479050355236321393218507..000000L

>>> ex.factl

<function factl at 0x902470>

>>> factl

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'factl' is not defined



The Basics




A Code Sample (in IDLE)

X=34-23 # A comment.

y = “Hello” # Another one.

z = 3.45

it z==3.45 or y == "Hello":
X=X+ 1

y =y + “World” # String concat.
print X

printy



Enough to Understand the Code

* Indentation matters to code meaning
* Block structure indicated by indentation

 First assighment to a variable creates it
* Variable types don’t need to be declared.
 Python figures out the variable types on its own.

- Assignment is = and comparison is ==
 For numbers + - */ % are as expected

- Special use of + for string concatenation and % for
string formatting (as in C’s printf)

- Logical operators are words (and, or,
not) not symbols

* The basic printing command is print



Basic Datatypes

* Integers (default for numbers)
z=5/2 # Answer 2, integer division
* Floats
X = 3.456

 Strings
« Can use “” or  to specify with “abc” == ‘abc’
« Unmatched can occur within the string: “matt’s”

» Use triple double-quotes for multi-line strings or

strings than contain both “ and “ inside of them:
H““a‘bﬂcﬂﬂﬂ

(13})




Whitespace

Whitespace is meaningful in Python: especially
indentation and placement of newlines
‘Use a newline to end a line of code
Use \ when must go to next line prematurely
‘No braces {} to mark blocks of code, use
consistent indentation instead
* First line with /less indentation is outside of the block
 First line with more indentation starts a nested block

‘Colons start of a new block in many constructs,
e.g. function definitions, then clauses



Comments

- Start comments with #, rest of line is ignored

- Can include a "documentation string” as the
first line of a new function or class you define

- Development environments, debugger, and
other tools use it: it's good style to include one

(n) :
“WWfact(n) assumes n 1s a positive
integer and returns facorial of n.”””
assert (n>0)

return 1 1f n==1 else n*fact(n-1)



Assignment

Binding a variable in Python means setting a name to
hold a reference to some object

« Assignment creates references, not copies
Names in Python do not have an intrinsic type,
objects have types

« Python determines the type of the reference automatically
based on what data is assigned to it

You create a name the first time it appears on the left

side of an assignment expression:
X =3

A reference is deleted via garbage collection after any
names bound to it have passed out of scope

Python uses reference semantics (more later)



Naming Rules

- Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.

bob Bob bob 2 bob  bob 2 BoB

 There are some reserved words:

and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, 1f,
import, in, 1s, lambda, not, or,
pass, print, raise, return, try,
while



Naming conventions

The Python community has these
recommend-ed naming conventions

joined_lower for functions, methods and,
attributes
joined_lower or ALL_CAPS for constants

StudlyCaps for classes

-camelCase only to conform to pre-existing
conventions

-Attributes: interface, internal, _ private



Assignment

-You can assign to multiple names at the
same time

>>> x, y = 2, 3

>>> X

2

>>> vy

3

This makes it easy to swap values
>>> X, y =Y, X

-Assignments can be chained
>>> a = b = x = 2



Accessing Non-Existent Name

Accessing a name before it's been properly
created (by placing it on the left side of an
assignment), raises an error

>>> vy

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
%
NameError: name ‘y' 1s not defined
>>> y = 3
>>> vy
3



Sequence types:
Tuples, Lists, and
Strings

r

A Y



Sequence Types
1. Tuple: (john’, 32, [CMSC])

- A simple immutable ordered sequence of
items

- Items can be of mixed types, including
collection types

2. Strings: “John Smith”
* Immutable
» Conceptually very much like a tuple
4. List: [1, 2, ‘john’, (‘up’, ‘down’)]
- Mutable ordered sequence of items of
mixed types



Similar Syntax

- All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

- Key difference:
* Tuples and strings are immutable
 Lists are mutable

- The operations shown in this section
can be applied to all sequence types

* most examples will just show the
operation performed on one



Sequence Types 1

- Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

- Define lists are using square brackets and

commas
>>> 11 = [“abc”, 34, 4.34, 23]

- Define strings using quotes (°, °, or “).

>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “WW“This 1s a multi-line

nrrr

string that uses triple quotes.



Sequence Types 2

- Access individual members of a tuple, list, or
string using square bracket “array” notation

- Note that all are 0 based...

>>> tu = (23, ‘abc’, 4.506, (2,3), ‘def’)

>>> tull] # Second item in the tuple.
‘abe!

>>> 1i = [Y“abc”, 34, 4.34, 23]

>>> 13i[1] # Second item in the list.
34

>>> st = “Hello World”
>>> st [1] # Second character in string.
\el



Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with O
>>> t[1]
‘abc’

Negative index: count from right, starting with —1
>>> t[—-3]

4.50



Slicing: return copy of a subset

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Return a copy of the container with a subset of
the original members. Start copying at the first
index, and stop copying before second.

>>> t[1:4]

(‘abc’, 4.506, (2,3))
Negative indices count from end

>>> t[1l:-1]

(‘abc’, 4.506, (2,3))




Slicing: return copy of a =subset

>>> t = (23, ‘abc’, 4.506, (2,3), ‘def’)

Omit first index to make copy starting from
beginning of the container

>>> t[:2]

(23, ‘abc’)
Omit second index to make copy starting at first
index and going to end

>>> t[2:]

(4.56, (2,3), ‘detf’)



Copying the Whole Sequence

- [ : ] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.56, (2,3), ‘def’)

- Note the difference between these two lines
for mutable sequences

>>> 12 = 11 # Both refer to 1 ref,

# changing one affects both

>>> 12 = 11[:] # Independent copies, two
refs



The ‘in’ Operator

- Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 1in t
True
>>> 4 not 1n t
False
- For strings, tests for substrings
>>> a = 'abcde'
>>> 'c¢' in a
True
>>> 'cd' 1in a
True
>>> 'ac' 1in a
False

- Be careful: the in keyword is also used in the syntax
of for loops and list comprehensions



The + Operator

The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 0)
(11 2/ 3/ 4/ 5/ 6)

>>> [1, 2, 31 + [4, 5, 6]
[11 2/ 3/ 4/ 5/ 6]

>>> \\Helloll _I_ \\ 144 _I_ \\Worldll
‘Hello World’



The * Operator

- The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(11 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3)

>>> [1, 2, 3] * 3

>>> “Hello” * 3
‘HelloHelloHello!



Mutability:
Tuples vs. Lists
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Lists are mutable

>>> 11 = [‘abc’, 23, 4.34, 23]
>>> 1i[1] = 45
>>> 11

[ ‘abc’, 45, 4.34, 23]

- We can change lists in place.

- Name /i still points to the same memory
reference when we’re done.



Tuples are immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-
tul[2] = 3.14

TypeError: object doesn't support i1tem assignment

‘You can't change a tuple.

‘You can make a fresh tuple and assign its
reference to a previously used name.
>>> t = (23, ‘abce’, 3.14, (2,3), ‘def’)

-The immutability of tuples means they’re faster
than lists.



Operations on Lists Only

>>> 11 = [1, 11, 3, 4, 5]

>>> 1i.append(‘'a’) # Note the method
syntax

>>> 113
[11 11/ 3/ 4/ 5/ ‘a,]

>>> li.insert (2, ‘i')
>>>11
(1, 11, ‘i’, 3, 4, 5, ‘a’]



The extend method vs +

-+ creates a fresh list with a new memory ref
-extend operates on list 1i In place.

>>> 1i.extend ([9, 8, 7])
>>> 17

I::I-I 2/ ‘i’I 3/ 4/ 5/ ‘a’I 9/ 8/ 7:|

- Potentially confusing:
» extend takes a list as an argument.
* append takes a singleton as an argument.
>>> 11.append([10, 11, 12])
>>> 11

I::I-I 2/ ‘j-,I 3/ 4/ 5/ ‘a,I 9/ 8/ 7/ I::I-OI
11, 127]



Operations on Lists Only

Lists have many methods, including index, count,
remove, reverse, sort

>>> 11 = [‘a’, ‘b'", ‘c¢’', ‘b’]

>>> 1i.1index(‘b’) # index of 1°% occurrence
1

>>> 1i.count (‘'b’) # number of occurrences
2

>>> 1li.remove (‘b’) # remove 1°% occurrence
>>> 11

[\aI, \CI, \b/]



Operations on Lists Only

>>> 11 = [5, 2, o6, 8]
>>> 1i.reverse () # reverse the list *in place*
>>> 117

(8, 6, 2, 5]
>>> 1i.sort () # sort the list *in place*
>>> 11

(2, 5, 6, 8]

>>> li.sort (some function)
# sort in place using user-defined comparison



Tuple details

- The comma is the tuple creation operator, not parens

>>> 1,
(1,)
- Python shows parens for clarity (best practice)

>>>(1J
(1)
- Don't forget the comma!

>>>(1)
1

- Trailing comma only required for singletons others
- Empty tuples have a special syntactic form

>>>()

()

>>> tuple()

()



Summary: Tuples vs. Lists

- Lists slower but more powerful than tuples

* Lists can be modified, and they have lots of
handy operations and mehtods

* Tuples are immutable and have fewer
features

- To convert between tuples and lists use the
list() and tuple() functions:

11 = list (tu)
tu tuple(1l1)



