

## СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Случайные величины и их числовые характеристики



#### Содержание



- Случайные величины
- Дискретная случайная величина (ДСВ)
- Закон распределения СВ
- Числовые характеристики ДСВ
- Теоретические моменты ДСВ
- Система двух ДСВ
- Числовые характеристики системы двух ДСВ
- Непрерывная СВ
- Функция распределения НСВ
- Функция плотности распределения НСВ
- <u>Числовые характеристики НСВ</u>
  - Кривая распределения СВХ

Мода

<u>Медиана</u>

Равномерное распределение плотности

Нормальный закон распределения. Функция Лапласа

http://aida.ucoz.ru

#### Понятие случайной

Случайная величина **Веди** из важнейцых понятий теории вероятностей. Случайные величины обозначают прописными буквами латинского алфавита, а их возможные значения — строчными.

Большинство экспериментов завершаются появлением некоторого числа X:

- в опыте по подбрасыванию n раз монеты X (числа выпаданий решки);
- при стрельбе по мишени из n опытов X (числа точных попаданий) и т.д.

В приведенных примерах число X обозначает величину, характеризующую некоторое случайное событие (опыт, эксперимент). В зависимости от исхода конкретного испытания эта величина принимает различные числовые значения, поэтому называется случайной.

Поскольку большинство величин окружающего мира являются случайными, их исследование представляется весьма важным в теории вероятностей.

# Понятие случайной величины



Случайной величиной (СВ) называется величина, которая в результате опыта может принять то или иное значение, причем заранее до опыта неизвестно, какое именно.

Делятся на два типа:

- •дискретные СВ (ДСВ)
- непрерывные СВ (НСВ)

# Дискретная случайная величина (ДСВ)

**ДСВ** — такая величина ,число возможных испытаний которой либо конечно, либо бесконечное множество, но обязательно счетное.

Например, частота попаданий при 3 выстрелах – Х

$$x_1 = 0, x_2 = 1, x_3 = 2, x_4 = 3$$

ДСВ будет полностью описана с вероятностной точки зрения, если будет указано, какую вероятность имеет каждое из событий.



#### Функция распределения случайной величины



В этом подразделе дано определение функции распределения и приведены ее свойства.

Результат эксперимента  $\xi$  будем называть **случайной величиной** (CB), если для любого  $x \in \mathbb{R}$  неравенство  $\xi < x$  является событием, т.е. определена вероятность  $P(\xi < x)$ . Эта вероятность как функция от x называется функцией распределения ( $\Phi$ P) случайной величины  $\xi$  и обозначается  $F_{\xi}(x)$ .

Итак, функцией распределения называют вероятность того, что случайная величина  $\xi$  в результате испытания примет значение, меньшее x:

$$F_{\xi}(x) = P(\xi < x).$$
 (2.1)

Там, где очевидно, о какой случайной величине идет речь, ее функцию распределения будем обозначать просто F(x).

## Функция распределения случайной величины



Свойства функции распределения:

- 1) функция распределения монотонно не убывает на  $\mathbb{R}$ , т.е.  $\forall x_1$ ,  $x_2 \in \mathbb{R}$ , если  $x_1 < x_2$ , то  $F(x_1) \leq F(x_2)$ . Это очевидно, так как событие ( $\xi < x_2$ ) является суммой двух несовместных событий ( $\xi < x_1$ ) и ( $x_1 \leq \xi < x_2$ ). Значит,  $p(\xi < x_2) = p(\xi < x_1) + p(x_1 \leq \xi < x_2) \geq p(\xi < x_1)$  в силу неотрицательности вероятности;
- 2) так как событие  $\xi < +\infty$  достоверное, а  $\xi < -\infty$  невозможное, то  $\exists \lim_{x \to -\infty} F(x) = 0$ ,  $\exists \lim_{x \to +\infty} F(x) = 1$ ;
- 3) поскольку функция распределения монотонна и ограничена на  $\mathbb{R}$ , она может иметь не более чем счетное множество точек разрыва первого рода;
- 4) функция распределения непрерывна слева при любом значении x:  $\lim_{y\to x-0} F(y) = F(x)$ ;
- 5) вероятность того, что случайная величина  $\xi$  примет значение в полуинтервале [a,b), равна

$$P\{a \le \xi < b\} = F(b) - F(a). \tag{2.2}$$

Эти свойства непосредственно вытекают из определения функции распределения.



Случайная величина называется **дискретной**, если она принимает отдельные, изолированные возможные значения с определенными (ненулевыми) вероятностями. Тогда каждому элементарному исходу X ставится в соответствие одно из не более чем счетного набора пар чисел  $(x_1, p_1), ..., (x_n, p_n), n \le \infty$ .

Правило, устанавливающее связь между значением случайной величины и ее вероятностью, называется законом распределения случайной величины.

Случайные величины обозначают прописными буквами латинского алфавита X, Y, ..., а значения, которые они принимают, — соответствующими строчными: x, y, ....

Например, дискретная случайная величина X представляет собой конечный (или бесконечный) ряд чисел  $x_1, x_2, x_3, ..., x_n, ...$  Если заданы вероятности  $p_1, p_2, p_3, ..., p_n, ...,$  то его называют также рядом распределений.



#### величины

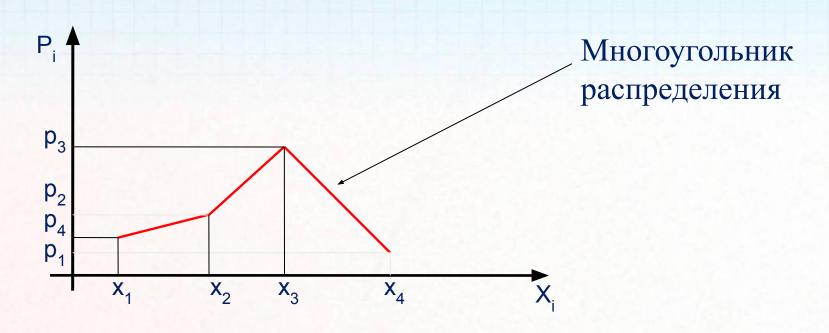
Обычно закон распределения случайной величины задается в виде таблицы, в первой строке которой расположены значения случайной величины, а во второй — соответствующие им вероятности:

| $x_i$     | $x_1$ | $x_2$ | $x_3$                 | ••• | $x_n$          |
|-----------|-------|-------|-----------------------|-----|----------------|
| <br>$p_i$ | $p_1$ | $p_2$ | <i>p</i> <sub>3</sub> | ••• | p <sub>n</sub> |

При этом сумма вероятностей всех возможных значений случайной величины X равна 1:

$$\sum_{i=1}^n p_i = 1.$$

## Закон распределения ДСВ



Сумма ординат многоугольника распределения, представляющая собой сумму вероятностей всех возможных значений СВ всегда равна 1





#### величины

Задача 2.1. В результате подбрасывания двух игральных костей появляется некоторое число X — случайная величина, характеризующая сумму выпавших очков с определенной вероятностью. Найти закон распределения такой случайной величины X.

Решение. Число равновозможных исходов  $n = 6 \cdot 6 = 36$ , а число благоприятных исходов, например, для x = 4 может быть получено тремя способами: 4 = 1 + 3 = 2 + 2 = 3 + 1.

Поэтому соответствующая x = 4 вероятность равна  $p = \frac{3}{36}$ .

Закон распределения такой случайной величины можно задать таблицей:

| $x_i$ | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             | 11             | 12             |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $p_i$ | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | $\frac{4}{36}$ | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | $\frac{4}{36}$ | $\frac{3}{36}$ | $\frac{2}{36}$ | $\frac{1}{36}$ |



Дискретная случайная величина считается заданной, если указан закон ее распределения, т.е. известны все значения ДСВ и вероятность каждого из них.

Очевидно, что можно было бы еще учесть выпадение сумм вида 0, 1, 13, 14, ..., а также нецелые числа и т.д., но поскольку ни одно испытание этому не благоприятствует, рассматриваются только реальные испытания. Поэтому для практического применения формул для ДСВ достаточно учитывать *только те x\_i, для которых*  $p_i \neq 0$ .

Поскольку каждому значению x ДСВ ставится в соответствие ее вероятность, то закон распределения ДСВ можно задавать с помощью функции распределения ДСВ.



#### величины

Функцией распределения F(x) ДСВ  $\xi$  называется вероятность события  $\xi < x$ :  $F(x) = P(\xi < x)$ . Очевидно, она обладает всеми общими свойствами функции распределения.

Свойства функции распределения ДСВ:

пусть задана ДСВ *X*:  $(x_i, p_i), p_i \neq 0, \sum p_i = 1$ . Тогда:

- 1) функция распределения непрерывна при  $x \neq x_i$  и имеет разрыв первого рода при  $x = x_i$ , равный  $p_i$ ;
  - 2) функция распределения постоянна на полуинтервале  $(x_i, x_{i+1}]$ ;
  - 3)  $F(x_i + 0) F(x_i) = p_i$ ;
  - 4) свойство накопительной вероятности:

$$F(x) = \sum_{x_i < x} p_i.$$
 (2.3)

Использование этого свойства удобно при моделировании, например на ЭВМ, где сначала указывают пределы суммирования, не зависящие от суммируемых величин.



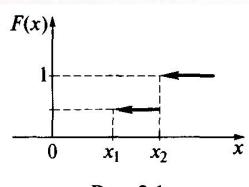
#### величины

График функции распределения произвольной ДСВ представляет собой «возрастающую ступеньку» (рис. 2.1). График функции распределения ДСВ, заданной аналитически формулой

$$F(x) = \begin{cases} 0 & \text{при } x \le x_1; \\ p_1 & \text{при } x_1 < x \le x_2; \\ 1 & \text{при } x > x_2, \end{cases}$$

приведен на рис. 2.1.







Очевидно, что это функция распределения «неслучайной» СВ, принимающей значение 0 с вероятностью 1. Тогда ФР ДСВ, заданной рядом распределений, будет иметь вид  $F(x) = \sum_i p_i \theta(x - x_i)$ .

Проверьте, что все свойства функции распределения ДСВ выполнены. Таким образом, суммирование идет по всем *i*, и необязательно представлять ряд распределений в виде ранжированного ряда, т.е. для машинного задания требуется меньшее число сравнений, а значит, машинного времени.





Пусть ф — некоторая детерминированная функция, определенная на пространстве элементарных исходов  $\Omega$  случайной величины X. Тогда каждому возможному значению  $x_i$  случайной величины X соответствует определенное значение  $y_i = \varphi(x_i)$ . В таком случае исходу  $v_i$ благоприятствует элементарный исход  $x_i$ с той же вероятностью  $p_i$ , т.е. функция ф задает новое пространство элементарных

исходов  $\varphi(\Omega)$ , на котором задана случайная величина Y, называемая функцией одного случайного аргумента  $Y = \varphi(X)$ .



Если одному значению  $y_i$  соответствуют различные значения  $x_1, ..., x_k$ , то полная вероятность осуществления  $y_i$  равна сумме вероятностей всех исходов, влекущих  $y_i$ , т.е.

$$p(X=x_1$$
 или... или  $X=x_k)=\sum_{i=1}^k P(X=x_i)=\sum_{i=1}^k p_i$ .



#### **ВЕПИЧИНЫ**

Задача 2.2. Дискретная случайная величина X задана рядом распределений:

| $x_i$    | -2   | 2    | 5    |
|----------|------|------|------|
| $P(x_i)$ | 0,35 | 0,42 | 0,23 |

Составить закон распределения ДСВ  $Y = X^2$ . *Решение*. Составим закон распределения ДСВ  $Y = X^2$ :

| $x_i$     | -2   | 2    | 5    |
|-----------|------|------|------|
| $(x_i)^2$ | 4    | 4    | 25   |
| $P(x_i)$  | 0,35 | 0,42 | 0,23 |

Так как двум различным значениям CB X(x=-2, x=2) соответствуют равные значения CB Y(y=4), то составим новый закон распределения ДСВ  $Y=X^2$ , сложив вероятности, соответствующие этим значениям CB X:

| $y_i^2$  | 4    | 25   |
|----------|------|------|
| $P(y_i)$ | 0,77 | 0,23 |

#### ДОМАШНЕЕ ЗАДАНИЕ



1. Запишите закон распределения СВ задачи:

Деревянный кубик с окрашенными гранями распиливается на 64 равных кубика, из которых наугад выбирается один кубик. Какова вероятность того, что он будет содержать:

- 1) ровно одну окрашенную грань
- 2) ровно две;
- 3) ровно три:
- 4) хотя бы одну;
- 5) более трех;
- 6) не менее двух.
- **2.** Случайная величина X задана рядом распределения. Определите недостающее значение вероятности:

| X | 3    | 5    | 7    | 11   | 12 |
|---|------|------|------|------|----|
| р | 0,18 | 0,13 | 0,33 | 0,21 | ?  |

## ДОМАШНЕЕ ЗАДАНИЕ



3. Составить опорный конспект по теме

