ЭНЗИМОДИАГНОСТИ КА

ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ

- В клинической лабораторной практике речь всегда идет не о количестве фермента, а об его активности, поскольку:
- 1. Измерить абсолютное количество фермента в биологической жидкости крайне сложно вследствие малого его количества и трудностей выделения в чистом виде.

 2. Абсолютное количество ничего не говорит о его активности. Абсолютное количество фермента может быть большое, а активность низкая вследствие влияния тех или иных факторов и наоборот.

- Для определения активности фермента используют 2 основных подхода:
- 1. Убыль субстрата.
- 2. Прирост продукта.

ПОНЯТИЕ СТАНДАРТНЫХ УСЛОВИЙ

 Для того чтобы сравнивать данные об активности ферментов разных определений необходимо проводить их в одинаковых условиях которые называются стандартными. Для создания стандартных условий пользуются следующими правилами:

- 1. Оптимальное для определяемого фермента значение рН;
- 2. Концентрация субстрата выше насыщающей;
- З. Для сложных ферментов концентрация кофакторов (ионы металлов, коферментов) выше насыщающей;

- 4. Время инкубирования смеси строго лимитируется;
- 5. Стандартная температура принята за 25°. Другая температура измерения специально оговаривается в методике.

ЕДИНИЦЫ ФЕРМЕНТАТИВНОЙ АКТИВНОСТИ

 Поскольку в большинстве случаев измерить количество фермента в абсолютных единицах невозможно, на практике пользуются условными единицами основанными на линейной зависимости скорости реакции от количества фермента. Международная единица фермента (E) – это такое его количество, которое катализирует превращение 1 мкмоль вещества за 1 мин.

Определяют по формуле:

количество превращенного субстрата, мкмоль

навеска ткани, г * время инкубации, мин

Удельная активность фермента – масса фермента (в миллиграммах), способной превратить 1 мкмоль субстрата за 1 мин в стандартных условиях. Выражается в (мкмоль/мин)/мг белка.

Определяется по формуле:

Число единиц фермента (Е) в образце

Масса белка в мг в этом образце

1 катал (кат) – кол-во фермента, способное осуществить превращение 1 моля субстрата за 1 сек)

На практике чаще используют мккат и нкат

Принципы и последовательность действий при выделении ферментов

Экстракция в мягких условиях (например 0,25м р-р сахарозы) и гомогентизация (разрушение клеточной структуры).

Последовательное центрифугирование (основано на различной седиментации субклеточных структур)

Очистка и выделение белка (высаливание, хроматография, диализ и др.)

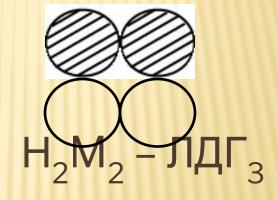
ИЗОФЕРМЕНТЫ

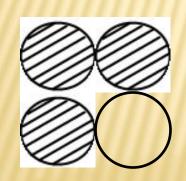
 Обнаружены в 1959 году методом гельэлектрофореза. Это ферменты которые катализируют одну и ту же реакцию, но различаются по кинетическим свойствам, а/к составу, либо по последовательности а/к остатков. Наличие изоферментов обусловлено генетически.

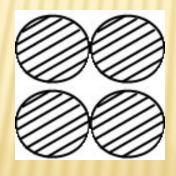
- Существует понятие множественные формы ферментов – это негенетически обусловленные модификации одного и того фермента (например активная и неактивная липаза).
- Т.о. изоферменты это ферменты которые катализируют одну и ту же реакцию, но в разных условиях.

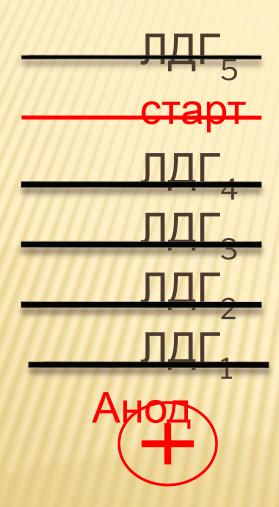
Лактатдегидрогеназа (ЛДГ) – фермент, катализирующий обратимое восстановление пирувата до лактата.
 Является белком с четвертичной структурой. Состоит из 4-х субъединиц.
 Молекулярная масса каждого протомера 35 кД, соответственно тетрамера 140 кД.

 В цитоплазме клеток и сыворотке крови ЛДГ имеет 5 изоферментов, представленных 5 различными комбинациями 2-х типов полипептидных цепей. H - (heart) - сердце




M - (muscle) - мышца €





Н-протомеры несут более выраженный отрицательный заряд, чем М-протомеры.
 Т.о. чем больше в комбинации Н-протомеров, тем в большей степени данный белок перемещается к аноду. В связи с этим выделяют 5 типов ЛДГ.

- ЛДГ 1 работает в аэробных условиях (сердце), следовательно с небольшим количеством субстрата, следовательно имеет высокую степень специфичности, следовательно низкую Km.
- ЛДГ 5 работает в анаэробных условиях (мышца), следовательно большое количество субстрата, следовательно большая Кт.

- Т.о. ЛДГ1 участвует в окислении лактата в пируват в тканях с аэробным типом метаболизма (миокард, мозг, почки, эритроциты, тромбоциты).
- ЛДГ5 оптимизирована для превращения пирувата в лактат в тканях с высоким уровнем гликолиза (скелетные мышцы, печень).

КРЕАТИНФОСФОКИНАЗА (КФК)

 Катализирует обратимый перенос фосфатного остатка между АТФ и креатином с образованием АДФ и креатинфосфата. КФК – димер, состоящий из 2-х субъединиц с молекулярной массой 41 кД и активном центре в каждом протомере. Креатинфосфокиназа (КФ 2.7.3.2.)

Креатин + АТФ креатинфосфат + АДФ Выделяют 2 типа субъединиц:

- B brain (мозг)
- M muscle (мышцы)
- Соответственно двум формам молекула КФК имеет следующие варианты:
- ВВ головной мозг
- ВМ миокард
- ММ мышца

ЭНЗИМОПАТОЛОГИЯ

- Наука которая изучает заболевания связанные с нарушением функционирования энзимов. Нарушения функционирования энзимов – энзимопатии могут быть:
- 1. Наследственные;
- 2. Токсические;
- 3. Алиментарные;
- 4. Связанные с нарушением ферментных процессов в клетке.

1. НАСЛЕДСТВЕННЫЕ ЭНЗИМОПАТИИ

- Включают в себя врожденные генетические заболевания обусловленные недостаточной активностью фермента или полное выпадение синтеза данного фермента.
- Например:
- 1. Фенилкетонурия;
- 2. Галактоземия;
- 3. Алкаптонурия;
- 4. Гликогенозы

2. ТОКСИЧЕСКИЕ ЭНЗИМОПАТИИ

- Обусловлены:
- а) Воздействием на организм токсинов, инфекционных агентов
- Например: патологическая активация токсином холерного вибриона аденилатциклазы
- б) передозировка лекарственных средств

3. АЛИМЕНТАРНЫЕ - ПИЩЕВЫЕ

- Обусловлены недостаком поступления витаминов, микроэлементов.
- Например: цинга. Нарушается процесс гидроксилирования остатков пролина.

 4. Связаны с нарушением кровоснабжения ткани, недостатком кислорода и др.

ОРГАНОСПЕЦИФИЧНОСТЬ ФЕРМЕНТОВ

 Существуют ферменты присутствующие практически во всех органах и тканях. Как правило эти ферменты обеспечивают основы жизнедеятельности клетки. В то же время для функционирования высокодифференцированных клеток существуют специальные ферменты которые называют органоспецифическими, т.к. они встречаются в одном, двух органах.

- В клинической лабораторной практике активность ферментов чаще всего определяют в плазме крови. Ферменты плазмы крови подразделяют:
- 1. Секреторные синтезируются в печени, выполняют в крови определенную функцию (факторы свертывания крови).

- 2. Экскреторные синтезируются в печени, выделяются с желчью, но при определенных условиях могут попадать в кровь (щелочная фосфатаза, лейцинаминополипептидаза).
- З. Индикаторные (внутриклеточные) в норме в плазме определяются только в следовых количествах, поскольку выполняют внутриклеточные функции. При разрушении клеток выходят в кровь, что лежит в основе энзимодиагностики.

- Для диагностики имеют значения следующие состояния:
- 1. Гиперферментемия увеличенный синтез или выброс фермента из пораженного органа;
- 2. Гипоферментемия;
- 3. Появление фермента в норме отсутствующего.

ЭНЗИМОДИАГНОСТИКА ИНФАРКТА МИОКАРДА

 Патогенез: нарушение кровоснабжения участка сердечной мышцы приводит к разрушению кардиомиоцитов и резкому увеличению в крови следующих ферментов:

Изменение активности некоторых ферментов

при	остром инфаркте миокарда			
Фермент	Начало увеличения активности, ч	Максимум увеличения активности, ч	Возвращение к норме, сут	Ожидаемое увеличение активности(во сколько раз)

24 - 36

48 - 72

24 - 92

24 - 48

24 - 48

Креатинфосфо

Лактатдегидрог

киназа (КФК)

еназа (ЛДГ)

 $ЛД\Gamma_1$ и $ЛД\Gamma_2$

Аспартатамино

трансфераза

Альдолаза

общая

(ACT)

(АЛД)

BM

2 - 4

8 – 10

8 - 10

4 - 6

4 - 6

3 - 6

8 - 9

10 - 12

4 - 7

2 - 9

B3 - 30

B2 - 4

B4 - 12

B2 - 5

Заболевания печени

- Разрушение гепатоцитов приводит к ↑ АЛТ (аланинаминотрансфераза) в сыворотке крови
- На практике часто используют коэффициент Ритиса: ACT/AЛT N = 1, 33
- <u>Увеличение</u> коэффициента Ритиса свидетельствует о поражении <u>сердца</u>, <u>снижение</u> поражение <u>печени</u>
- ГГТ γ глутамилтранспептидаза ↑ в сыворотке крови только при токсических гепатитах (алкогольное отравление, наркотики, седативные препараты и др.). «Отсеивающий» тест для дифференциальной диагностики гепатитов.
- ЩФ (щелочная фосфатаза) ↑ в крови при нарушении оттока желчи (механическая желтуха), холангиты

Коэффициент
$$AЛТ$$
 $= AСТ + { ГЛДГ }$

ГлДГ – глутаматдегидрогеназа
К.ш.> 30 – при гепатитах с острым и хроническим течением и при циррозе печени
5 – 15 – при механической (обтурационной) желтухе

ЭНЗИМОДИАГНОСТИКА ЗАБОЛЕВАНИЙ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Основным ферментом для
 энзимодиагностики является α-амилаза. α амилаза мочи называется диастаза.
 Повышение активности амилазы в крови в
 2 раза и более должно расцениваться как
 симптом поражения поджелудочной
 железы.

 Небольшое увеличение активности дает основание заподозрить патологию поджелудочной железы, но иногда может наблюдаться при других заболеваниях (паротит).

Заболевание поджелудочной железы

Кл	пиническая ситуация	↑ активности амилазы		
1.	Острый панкреатит	+ + +		
2.	Препятствие оттоку	+ + +		
	панкреатического сока			
3.	Обострение хронического	+ +		
	панкреатита			
4.	Травма поджелудочной	+ +		
	железы			
5.	Заворот тонкой кишки	+		
6.	Перфорация язвы желудка	+		
	или 12. п. к.			

при поражениях поджелудочной железы отмечается также увеличение активности трипсина и липазы

ЭНЗИМОДИАГНОСТИКА ЗАБОЛЕВАНИЙ ДРУГИХ ОРГАНОВ

Основана на явлении органоспецифичности

Рак предстательной **↑КΦ** (кислой фосфатазы) железы Рахит ↑ЩФ (щелочная фосфатаза) Острая и хроническая пневмония Рак молочной железы липазы Прогрессирующая 1KPK MIM мышечная дистрофия (креатинфосфокиназа) Заболевания почек тлицин – амидинотрансфераза

ПРИНЦИПЫ ЭНЗИМОТЕРАПИИ

- Энзимотерапия использование в лечебных целях ферментов и лекарственных средств влияющих на активность ферментов. Основные подходы:
- 1. Ферментные препараты.
- 2. Коферменты.
- 3. Активаторы.
- 4. Ингибиторы.