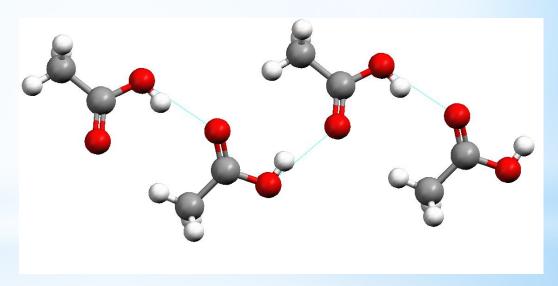

* ОРГАНИЧЕСКАЯ ХИМИЯ Лекция 12


- 1. Карбоновые кислоты
- 2. Производные карбоновых кислот

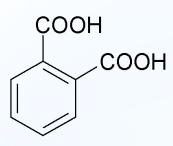
*Карбоновые кислоты - производные углеводородов, содержащие карбоксильную группу -СООН

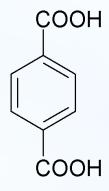
$$-C_{O-O-H}$$
 $-C_{OH}$ $-C_{O+O-CO_2H}$

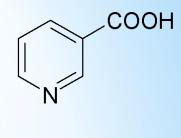
*****1. Структура

R.Boese, D.Blaser, R.Latz, A.Baumen // Acta Crystallogr. C., 1999, Vol.55, P. 991.

*2. Номенклатура


Число	Название	Название соли	Тривиальное	Тривиальное	Этимология
атомов С	кислоты по ИЮПАК	по ИЮПАК	название кислоты	название соли	тривиального названия
1	Метановая	Метаноат	Муравьиная	Формиат	лат. Formica - муравей
2	Этановая	Этаноат	Уксусная	Ацетат	лат. Acetum - уксус
3	Пропановая	Пропаноат	Пропионовая	Пропионат	гр. πρωτος - первый, pion - жир
4	Бутановая	Бутаноат	Масляная	Бутират	лат. Butyrum - масло
5	Пентановая	Пентаноат	Валерьяновая	Валерат	лат. Valeriana - валериана (valere - быть сильным)
6	гексановая	гексаноат	Капроновая	Капронат	лат. Caper - коза


lpha-метилмасляная кислота


2-метилмасляная кислота

*Названия солям обычно дают, используя тривиальные названия:

- *HCOONH₄ формиат аммония
- *CH₃COONa ацетат натрия,
- *(CH₃CH₂COO)₂Ca пропионат кальция,
- *(CH₃COO)₃Fe ацетат железа(III).

бензойная никотиновая кислота фталевая

кислота

терефталевая

кислота

кислота

- *3. Изомерия
- * 3.1. Структурная изомерия
- *3.1.1. Изомерия углеродного скелета

бутановая кислота

2-метилпропановая кислота

*3.1.2. Межклассовая изомерия

7

2-гидроксипропанал²в.03.2011

*3.1.3. Пространственная изомерия

(R)-2-метилмасляная кислота

(S)-2-метилмасляная кислота

цис-бутеновая кислота

транс-бутеновая кислота

*4. Физические и биологические свойства

Низшие жирные кислоты представляют собой легкоподвижные жидкости, средние члены - масла, высшие - твёрдые кристаллические вещества.

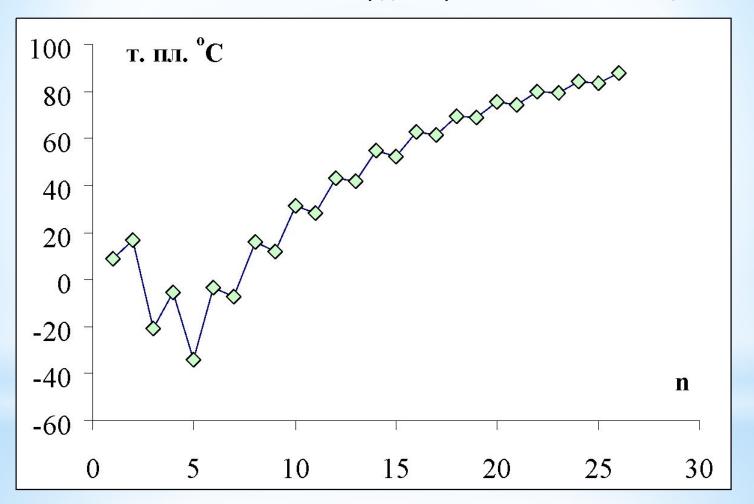


Рис. 1. Температуры плавления карбоновых кислот.

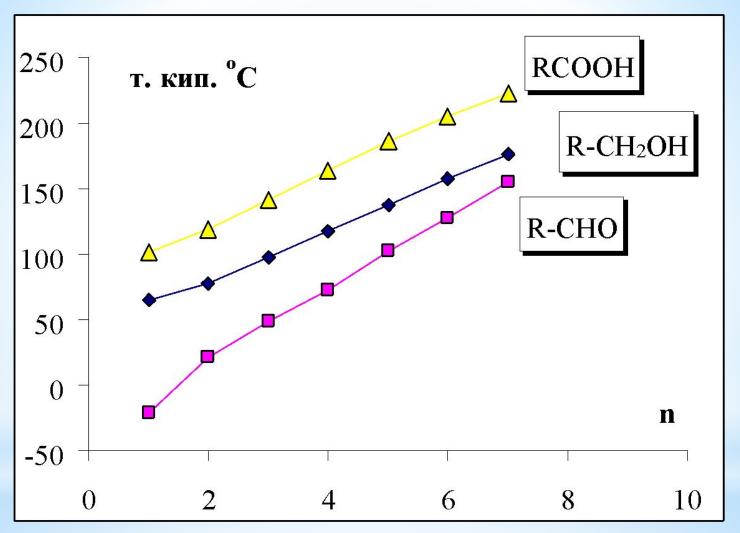
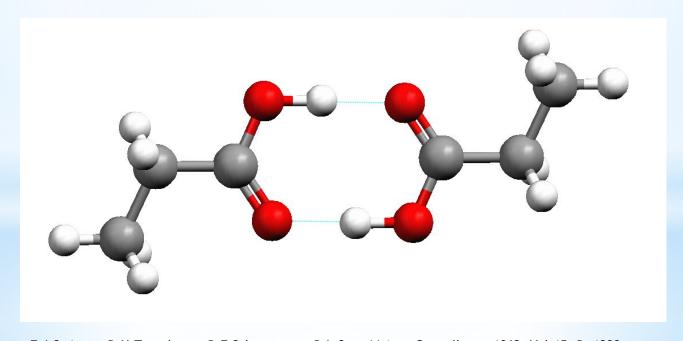
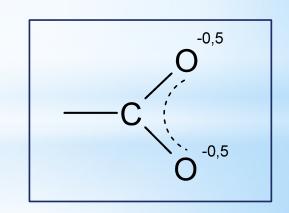



Рис. 2. Температуры кипения в гомологическом ряду карбоновых кислот, альдегидов и спиртов.

*Почему же температуры кипения кислот больше, чем соответствующих спиртов?

F.J.Strieter, D.H.Templeton, R.F.Scheuerman, R.L.Sass // Acta Crystallogr., 1962, Vol.15, P. 1233


*Первые челны гомологического ряда карбоновых кислот обладают резким запахом, средние - прогорклым, неприятным, например, масляная кислота пахнет потом, высшие карбоновые кислоты вследствие нелетучести лишены запаха.


*Карбоновые кислоты, как правило, не ядовиты, однако приём внутрь концентрированных растворов (например, уксусной эссенции) вызывает тяжёлые ожоги. Нежелательно попадание этих растворов на кожу и тем более внутрь.

*5. Химические свойства

***5.1.** Кислотные свойства

$$-c(O) \longrightarrow -c(O) + H^{+}$$

$$R-C(O) = R-C(O) + H^{+}$$

$$O-H = R-C(O)$$

$$K = \frac{[RCOO-][H+]}{[RCOOH]}$$

$$K = 2.14 \cdot 10^{-4}$$

$$CH_3$$
- C O-H

$$K = 1.75 \cdot 10^{-5}$$

$$2 \text{ CH}_3^-\text{COOH} + \text{Zn} \longrightarrow (\text{CH}_3\text{COO})_2\text{Zn} + \text{H}_2$$

$$CH_3^-COOH$$
 + CuO \longrightarrow $(CH_3COO)_2Cu$ + H_2O уксусная кислота оксид меди(II) ацетат меди(II)

CH₃COOH + NaOH
$$\longrightarrow$$
 CH₃COONa + H₂O
2CH₃COOH + Na₂CO₃ \longrightarrow 2CH₃COONa + H₂CO₃ $\stackrel{CO_2}{\longrightarrow}$ H₂O

Нижник Я.П. http://norgchem.professorjournal.ru

*5.2. Нуклеофильное ацильное замещение

$$R-C-OH \longrightarrow R-C-X$$

*5.2.1. Образование сложных эфиров - этерификация по Фишеру.

$$CH_3 - C_2 - C_2 + C_3 - C_2 + C_3 - C_2 + C_3 - C_2 + C_3 - C_3 - C_4 - C_5 - C_5$$

уксусная кислота

этиловый спирт

этилацетат

вода

Механизм реакции этерификации

Переэтерификация

$$CH_3COOC_2H_5 + CH_3OH \xrightarrow{H_2SO_4} CH_3COOCH_3 + C_2H_5OH$$

Гидролиз сложных эфиров под действием щелочи

Механизм

*5.2.2. Образование галогенангидридов

Атомы галогена в галогенангидридах могут легко замещаются при действии различных нуклеофилов, поэтому галогенангидриды являются основой для синтеза разнообразных производных карбоновых кислот

*5.3. Реакция Геля-Фольгарда-Зелинского

$$CH_3-CH_2-COOH \qquad \frac{Cl_2, P}{-HCl} \rightarrow CH_3-CH-COOH$$

пропионовая кислота

2-хлорпропионовая кислота

2-гидроксипропионовая кислота 2-хлорпропионовая кислота 2-аминопропионовая кислота *5.4. Декарбоксилирование

$$R-COOH \longrightarrow R-H + CO_2$$

$$CH_3$$
-COOH \longrightarrow H_2 C=C=O + H_2 O

$$CH_3COONa + NaOH$$
 — \rightarrow $CH_4 + Na_2CO_3$ ацетат натрия

*Если при декарбоксилировании происходит ещё и окисление кислоты, то такое декарбоксилирование называется окислительным.

***5.4.1.** Реакция Бородина-Хунсдиккера

$$CH_3^-CH_2^-CH_2^-COOAg + Br_2 \longrightarrow CH_3^-CH_2^-CH_2^-Br + CO_2^{\uparrow} + AgBr_{\downarrow}^{\uparrow}$$

Реакция Кочи

*****5.4.2. Реакция Кольбе

$$2CH_{3}COONa + 2H_{2}O \xrightarrow{9Л. TOK} CH_{3} - CH_{3} + 2CO_{2} + 2NaOH + H_{2}$$
 анод катод

$$CH_3COO^ \xrightarrow{-1 \text{ электрон}}$$
 $CH_3COO^ CO_2$ CO_2

$$CH_3$$
 + CH_3 \longrightarrow CH_3 \longrightarrow CH_3

*****5.4.3. α-Окисление

$$R-CH_2-COOH$$
 H_2O_2
 H_2O_3
 CO_2
 H_2O_4
 H_2O_4
 H_2O_5
 H_2O_5

Процесс идёт в пероксисомах. При нарушении этого процесса развивается синдром Рефсума, характеризующийся накоплением фитановой кислоты в мозге

*5.5. Окисление и восстановление карбоновых кислот

- *Все карбоновые кислоты горят с образованием углекислого газа и воды (например, горение стеариновой и пальмитиновой кислот наблюдается при горении стеариновой свечи).
- *В организме карбоновые кислоты окисляются в основном за счёт т.н. β -окисления. Кроме того in vivo встречается также α и ω -окисление.
- *In vitro некоторые аналогичные реакции β-окисления можно осуществить с помощью 3% перекиси водорода.

- *Карбоксильная группа восстанавливается с большим трудом. Для того чтобы восстановить карбоновую кислоту до углеводорода требуется длительное кипячение с НІ в присутствии фосфора.
- *Прямое восстановление карбоновых кислот до спиртов водородом достигается при использовании высоких давлений и катализаторов (Cu, Ni, Co, Zn-Cr-Cu-Cd, Шраут, Норманн).

- *6. Получение карбоновых кислот
- *6.1. Из природных источников
- *6.2. Окисление углеводородов

$$CH_3-CH_2-CH_2-CH_3 + 3O_2 \longrightarrow 2CH_3COOH + 2H_2O$$

Уксусная кислота, СН₃СООН, бесцветная с резким запахом жидкость. Т.пл. 16,75 °C, т. кип. 118,1 °C. Применяют в пищевой промышленности, для получения солей, эфиров, уксусного ангидрида, ацетилхлорида, ацетатного волокна, лекарственных (аспирин) и душистых веществ, хлоруксусных кислот, как растворитель, например, в производстве ацетата целлюлозы (ацетатного волокна).

*6.3. Гидролиз производных карбоновых кислот

Нижник Я.П. http://norgchem.professorjournal.ru 2H₂O

 $-NH_3$

*6.4. Вытеснение из солей сильными кислотами

Муравьиная кислота, HCOOH, жидкость с резким запахом, *t*кип 100,8 °C. Применяют в качестве протравы при крашении текстиля и бумаги, обработки кожи, для получения лекарственных средств, пестицидов, растворителей (ДМФА), как консервант фруктовых соков, сена и для дезинфекции бочек для пива и вина.

*6.5. Окисление альдегидов и спиртов

$$R-CH_{2}-OH \xrightarrow{KMnO_{4}, H^{+}} R-C \xrightarrow{O} \xrightarrow{KMnO_{4}, H^{+}} R-C \xrightarrow{O}$$

первичный спирт

альдегид кислота карбоновая

*производные карбоновых кислот

*1. Галогеноангидриды

ацетилхлорид ацетат натрия ангидрид уксусной кислоты

ацетилхлорид

уксусная кислота

$$CH_3$$
 C CI + C_2H_5OH \longrightarrow CH_3 C CI OC_2H_5

ацетилхлорид этилацетат

$$CH_3$$
 C' CI CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

ацетилхлорид ацетамид

*2. Ангидриды

Нижник Я.П.

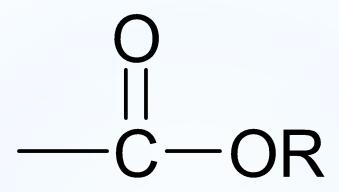
http://norgchem.professorjournal.ru

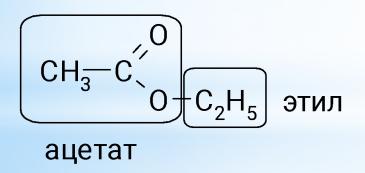
*Ангидриды - это соединения, образующиеся при отщеплении воды от кислот.

(an - отрицающая частица, греч. $\upsilon\delta \circ \rho$ - вода; т.е. "Ангидрид" означает "лишённый воды").

$$H_{2}CO_{3}$$
 CO_{2} $+$ $H_{2}O$ CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{4} CH_{5} C

34


28.03.2011


$$CH_{3}$$
 C CH_{3} C CH_{3} C CH_{3} C CH_{3} C CH_{3} C CH_{4} CH_{5} $CH_{$

$$CH_3-C'$$
 OC_2H_5

$$CH_3-C_N$$
 +

*3. Сложные эфиры

этил + ацетат = этилацетат

Сложноэфирная конденсация Кляйзена

$$CH_3$$
— C — CH_3 — C — CH_5 — CH_3 — C — CH_5 — CH_5

Ацетоуксусный эфир является сырьём для получения многих лекарственных веществ (напр., амидопирин, антипирин, акрихин, витамин B_1)

$$CH_3$$
— C + CH_3 — C + CH

ацетил-КоА

ацетил-КоА

ацетоацетил-КоА

Реакция является первой стадией <u>синтеза стероидов</u> (в частности холестерина), терпенов и процесса <u>кетогенеза</u>

*Полимерные сложные эфиры

Полиэтилентерефталат - синтетический полимер, продукт поликонденсации этиленгликоля с терефталевой кислотой (или ее диметиловым эфиром);

Полиэтилентерефталат перерабатывают главным образом в полиэфирные волокна - лавсан (дакрон, терилен и др. торговые названия), идущие на производство тканей.

Глифталевые смолы являются продуктами поликонденсации фталевой кислоты и глицерина (в промышленности их получают из глицерина и фталевого ангидрида). Являются вязкими, липкими веществами, которые используются для производства алкидных лаков и олифы.

*****4. Амиды

$$CH_3$$
 C CH_3 $CH_$

Ацетамид (этанамид)

Белки и пептиды также являются амидами, в которых амидная связь (которая в биохимии называется пептидной связью) образуется между остатками двух аминокислот:

Нижник Я.П. http://norgchem.professorjournal.ru

28.03.2011

*****Химические свойства амидов

Гидролиз

$$CH_3 - C + H_2O \xrightarrow{H^+} CH_3 - C + NH_3$$

$$OH$$

$$OH$$

In vivo пептидные связи очень легко гидролизуются под действием ферментов, например, в желудке белки гидролизуются под действием фермента пепсина, в двенадцатиперстной кишке - под действием трипсина, химотрипсина и ряда других ферментов.

Реакция Гофмана

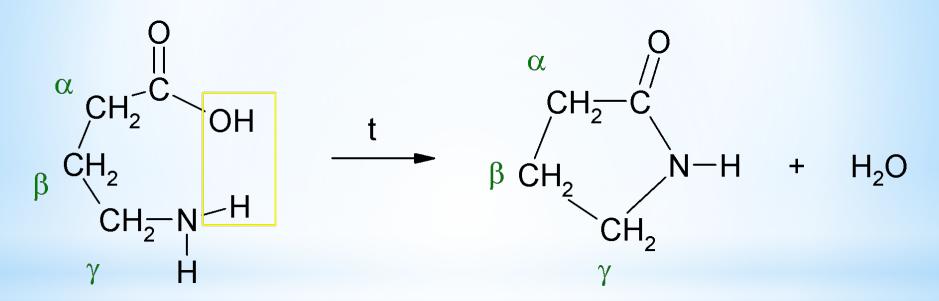
28.03.2011

***Получение** амидов

уксусный ангидрид анилин N-ацетиланилин уксусная кислота (ацетанилид)

Ацетанилид (антифебрин), C_6H_5 NHCOCH $_3$, Бесцветные кристаллы, tпл 114,3 °C. Первое лекарственное вещество, полученное синтетически; обладает жаропонижающим и болеутоляющим действием, используется в ветеринарии. Применяется в синтезе сульфамидных препаратов, стабилизатор H_2O_2 , пластификатор для нитратов целлюлозы.

$$CH_3 - C' O \longrightarrow CH_3 - C' O \longrightarrow$$


уксусная кислота

ацетат аммония

ацетамид

*****Лактамы

- *Циклические амиды называются лактамами.
- *Обычно они легко образуются при нагревании γ и δ аминокислот

у-аминомасляная кислота

у-бутиролактам

- *Полимерные амиды полиамиды.
- *Синтетические полиамиды отличаются высокой механической прочностью, износостойкостью, химической устойчивостью.

ε-капролактам

капрон

найлон - получают сплавлением (180-300°С, Карозерс) адипиновой кислоты и гексаметилендиамина

n
$$H_2N-(CH_2)_6-NH_2$$
 + n $HOOC-(CH_2)_6-COOH$ $-2nH_2O$

Найлон "nylon" (ny - New York). был первым промышленным синтетическим волокном (1936, Карозерс, США).

Из найлона и капрона получают полиамидное волокно, которое применяется в производстве тканей, трикотажа и т.д. Из нейлона делают струны для классической гитары и арфы.

*Конденсация хлорангидрида терефталевой кислоты с пфенилендиамином приводит к кевлару:

Прочность кевлара в пять раз выше, чем у стали и в 10 раз выше, чем у алюминия. Из кевлара изготавливают пуленепробиваемые жилеты, паруса для гоночных яхт, арматуру для пневматических шин и каски для гонщиков

*Прочие производные

$$CH_3 - C + H_2N - NH_2 \longrightarrow CH_3 - C + HC$$

$$CI + NH - NH_2$$

ацетилхлорид гидразин

гидразид уксусной кислоты

$$CH_3 - C + H_2N - OH \longrightarrow CH_3 - C + NH - OH$$

ацетилхлорид гидроксиламин

гидроксамовая кислота

$$CH_3 - C = C + H_2N - C - NH_2 \longrightarrow CH_3 - C = NH_2 + HCI$$

$$CI + H_2N - C - NH_2 \longrightarrow NH - C - NH_2$$

ацетилхлорид

мочевина

уреид уксусной кислоты

*Тиопроизводные карбоновых кислот

In vivo ацилирование происходит с помощью производного - ацил-КоА, который, в свою очередь может образовываться из свободной карбоновой кислоты и коэнзима A с участием АТФ

*Структура Коэнзима А

Спасибо за Ваше внимание!