ОТ ВОЗРАСТНЫХ ОСОБЕННОСТЕЙ ИММУННОЙ СИСТЕМЫ К ИММУНОПАТОЛОГИИ ПРИНЦИПЫ ИММУНОТЕРАПИИ

И.Г. Козлов

- Кафедра фармакологии и Отдел иммунологии, Российский государственный медицинский университет
- Лаборатория экспериментальной иммунологии и иммунофармакологии, ФНКЦ Детской гематологии, онкологии и иммунологии

Исследования иммунной системы

Кафедра онкологии и гематологии ПФ РНИМУ им Н.И.Пирогова

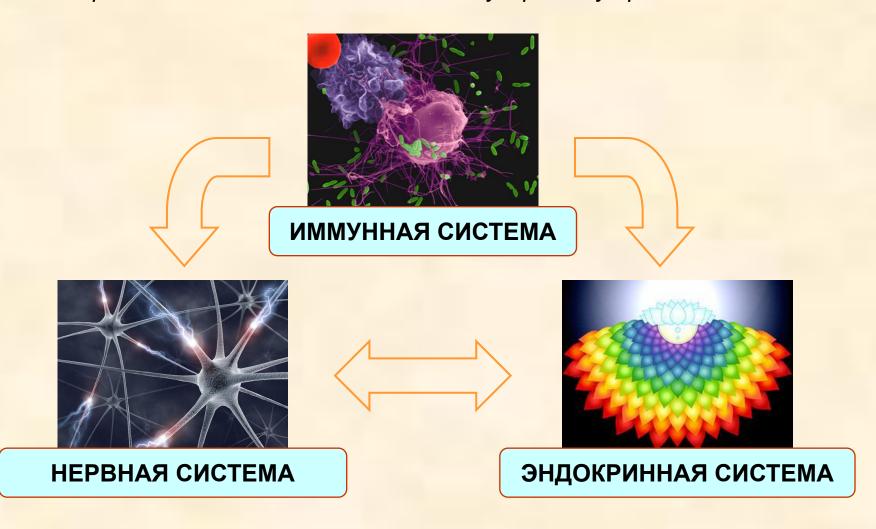
Электив «Значение исследований крови в клинической практике»

д.м.н., профессор И.Г.Козлов д.м.н., профессор С.А.Румянцев

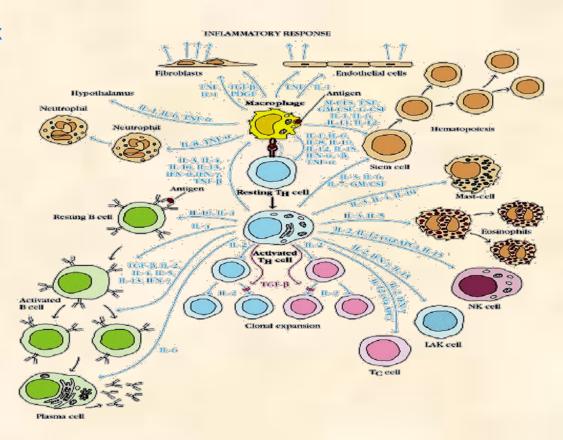
«Дети – это не маленькие взрослые»

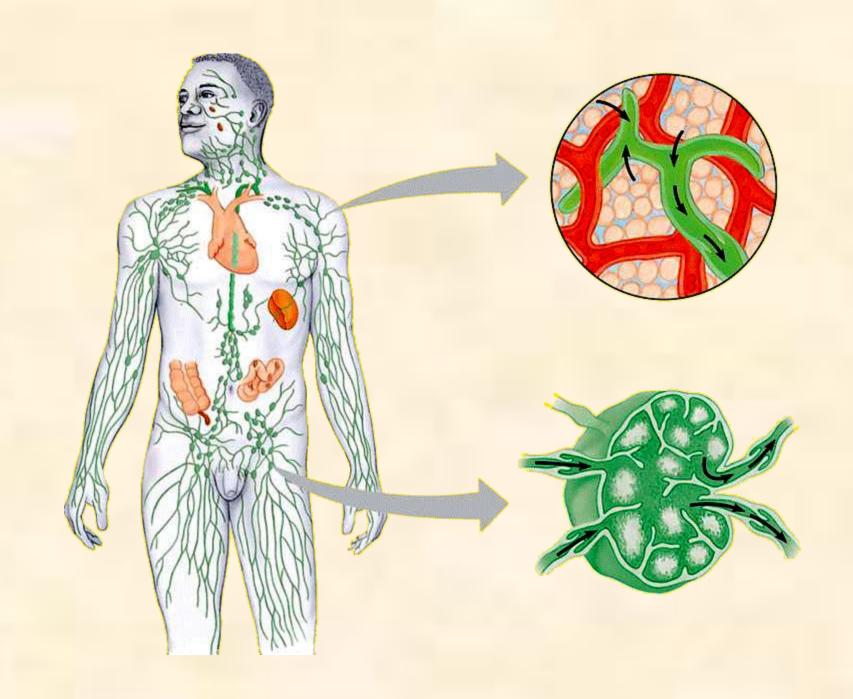
американский педиатр Абрахам Жакоби, начало прошлого века

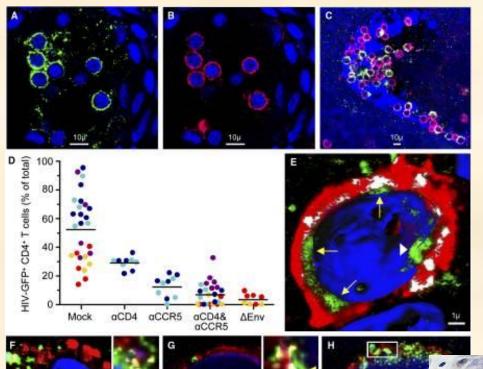
Первые 2 медицинские манипуляции в жизни каждого человека:


• Хирургическая – обрезание пуповины

• **Иммунотерапевтическая** — индукция направленного иммунного ответа против *M. tuberculosis* (прививка БЦЖ)

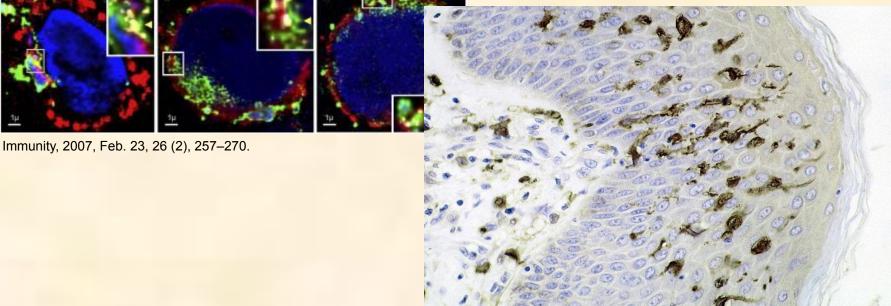

иммунная система


третья глобальная регуляторная система, обеспечивающая поддержание гомеостаза и согласованную работу органов и систем



иммунологический надзор

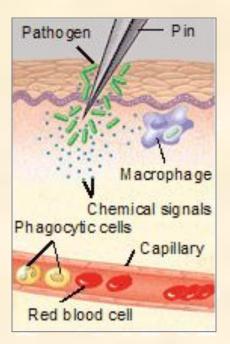
- В «старом» понимании набор тканевых реакций, направленных на элиминацию чужеродного
- В «новом» понимании набор воздействий, направленных на регуляцию жизнедеятельности паренхиматозных и стромальных клеток практически любой ткани (пролиферация и апоптоз, специфические функции и т.д.)
- Реализуется через цитокиновую сеть и контактные взаимодействия (рецепторы адгезии)

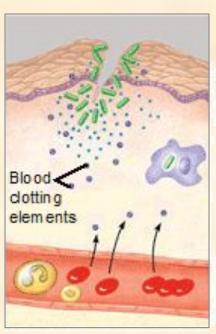


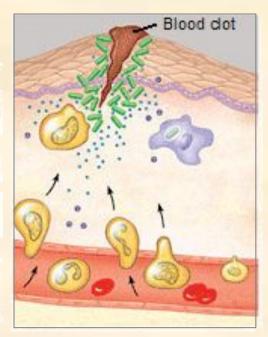
Внутриэпителиальные Т лимфоциты в слизистой влагалища

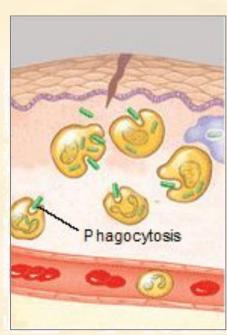
(до 40 лимфоцитов на 100 эпителиальных клеток)

Дендритные клетки (Лангерганса) в коже

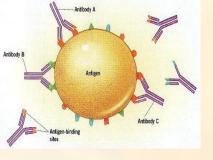


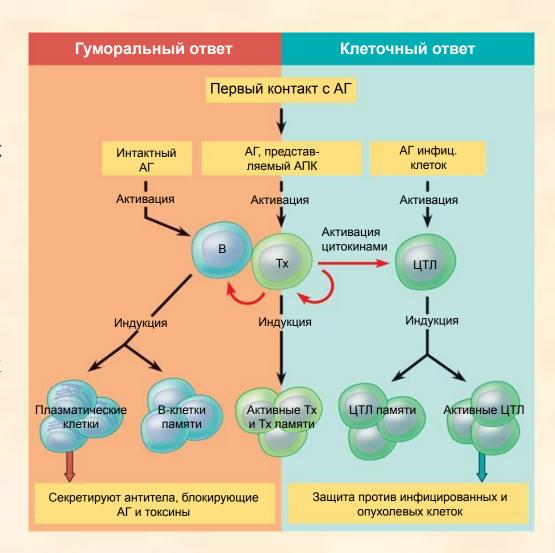

иммунные (защитные) реакции





ВРОЖДЕННЫЙ ИММУНИТЕТ



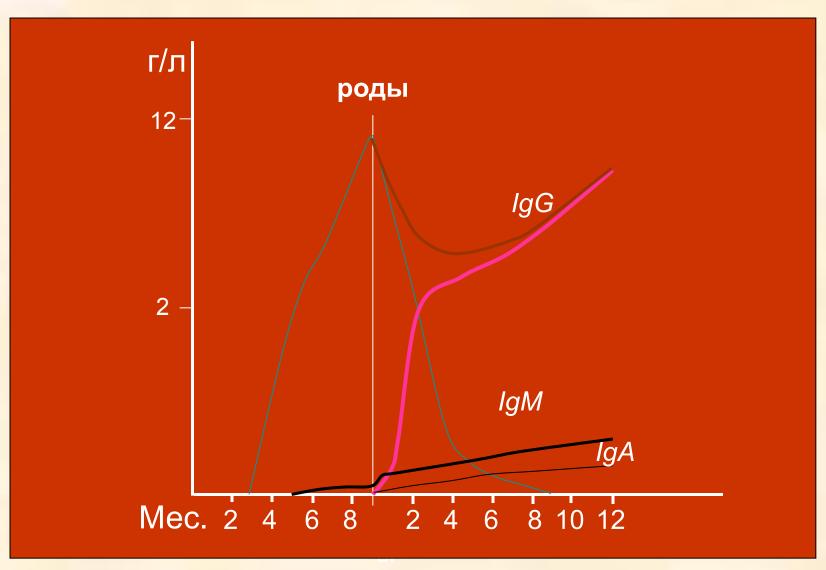

- Непрерывно работающая система (пограничные конфликты)
- Максимальная концентрация **локальных** клеточных и гуморальных **эффекторных** (элиминирующих) **механизмов**
- Эффективность >99%

АДАПТИВНЫЙ ИММУНИТЕТ

- «Интеллектуальная система» начальные значительные вложения под высокие дивиденты
- Первичный ответ всегда системный, от 7 до 21 дня, требует п х 10⁹ новых клеток, из которых 0,999... х 10⁹ погибает после окончания
- Вторичный ответ n x 10⁶ специфических клеток, реализация 3-14 дней
- Система «окупается» за 10 циклов. Реально в течении жизни их n x 10'000

ВОЗРАСТНЫЕ ОСОБЕННОСТИ ИММУНИТЕТА

- Макрофаги могут быть обнаружены уже на 4 неделе гестации (первые элементы иммунной системы)
- Натуральные клетки (NK) первые клетки лимфоидной природы определяются после 6 недели гестации в печени
- Зрелые нейтрофилы не определяются ранее 14-16 недели гестации
- К 12 неделе все основные антиген-презентирующие клетки уже присутствуют и экспрессия МНС II на них почти не отличается от
 - таковой у взрослых
- Предшественники Т- и В-клеток образуются в печени на 7-8 неделе гестации
- Рудименты тимуса заселяются пре-Т-клетками на 8,5 неделе гестации
- Пре-В-клетки обнаруживаются в косном мозге к 13 неделе гестации

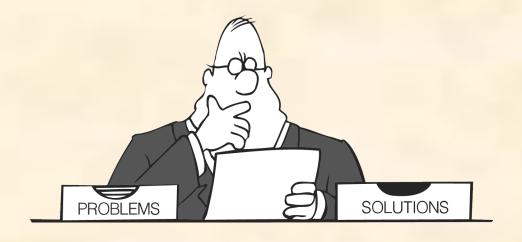

ВОЗРАСТНЫЕ ОСОБЕННОСТИ ВРОЖДЕННОГО ИММУНИТЕТА

- В течении первых месяцев жизни недостаточно развиты барьерные противомикробные функции слизистых и кожи
- Снижены хемотаксис, миграция и килинг гранулоцитами. Не сформировано депо гранулоцитов.
- Большая чувствительность новорожденных к невирусным внутриклеточным патогенам объясняется незрелостью NK клеток, дефицитом продукции интерферона-гамма и ФНО-а
- Снижена активность альтернативного пути комплемента, дефицит С8 и С9 компонентов

ВОЗРАСТНЫЕ ОСОБЕННОСТИ Т-КЛЕТОЧНОГО ИММУНИТЕТА

- У новорожденных практически отсутствует реакция гиперчувствительности замедленного типа (недостаточность функции антигенспецифических CD4+ клеток). Такое состояние может сохраняться вплоть до 12 месяцев.
- Затруднена кооперация Т- и В-лимфоцитов в адаптивном иммунном ответе
- Высокий уровень спонтанной пролиферации и большая доля наивных лимфоцитов
- Усиление цитотоксичности в ответ на ИЛ-2, высокая функциональная активность ЛАК

ВОЗРАСТНЫЕ ОСОБЕННОСТИ В-КЛЕТОЧНОГО ИММУНИТЕТА

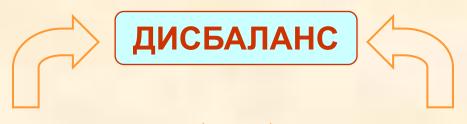

ВОЗРАСТНЫЕ ОСОБЕННОСТИ ИММУНИТЕТА

- Лабораторные признаки системного воспаления отмечаются у здоровых доношенных новорожденных детей, по-видимому, вследствие колонизации микрофлорой кожи и слизистых оболочек в раннем периоде адаптации.
- Отсутствие клинических симптомов системного воспаления у здоровых доношенных новорожденных детей обеспечивается параллельным увеличением продукции противовоспалительных медиаторов (IL-1ra, IL-4, TGF-β).

ИММУНОПАТОЛОГИЯ

ОСОБЕННОСТИ ИММУНОПАТОЛОГИЙ

- Более 90% так называемых «невоспалительных» хронических заболеваний (сахарный диабет, атеросклероз, болезнь Альцгеймера и др.) имеет в патогенезе «воспалительный/иммунный» компонент
- Наличие «иммунного» компонента в патогенезе приводит к утяжелению течения заболевания, его хронизации и резистентности к традиционной терапии


ОСОБЕННОСТИ ИММУНОПАТОЛОГИЙ

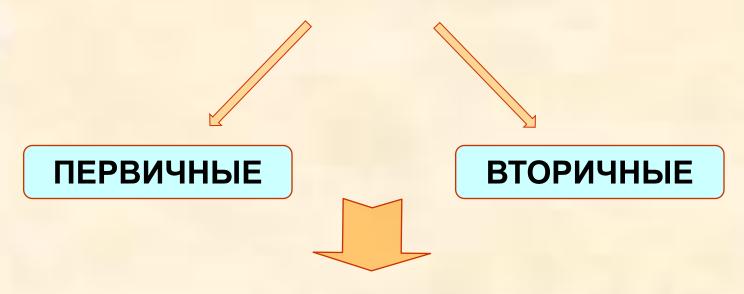
- «Молодость» и быстрое развитие иммунологии изменение диагностической значимости маркеров и «гуляющая» норма
- Позднее обращение к врачу нарушения в иммунной системе долгое время не сопровождаются субъективными ощущениями у больного
- Иммунопатология проявляется через нарушение функции различных органов и систем пациент попадает к «слабо подготовленному» врачу-специалисту загадочные диагнозы и неадекватная
- Первичный дефект в иммунной системе приводит к полиорганной патологии

терапия

ВИДЫ ИММУНОПАТОЛОГИЙ

множество заболеваний и множество локализаций, но ограниченное количество иммунологических нарушений

ИММУНОАГРЕССИЯ



ИММУНОДЕПРЕССИЯ

- Аллергия (ГНТ)
- Аутоиммунные заболевания (АИЗ)
- Лимфопролиферативные заболевания (ЛПЗ)

- Первичные ИД
- Вторичные ИД
- Иммунокомпроментированные состояния

ИММУНОДЕФИЦИТЫ

- Повышенная чувствительность к инфекциям
- Опухоли
- Аутоиммунные заболевания (АИЗ)
- Аллергия (ГНТ)

ДРУГИЕ ПРИЧИНЫ ПОВЫШЕННОЙ ЧУВСТВИТЕЛЬНОСТИ К ИНФЕКЦИЯМ

- Социально-бытовые факторы: увеличение контактов детей между собой и с взрослым населением, смена места жительства
- Морфологические дефекты закладки органов: стеноз уретры, деформация бронхов и др.
- Инородные тела: венозные катетеры, искусственные сердечные клапаны, аспирированное инородное тело и др.
- Нарушения микроциркуляции: диабет, пороки сердца, васкулит...
- Нарушенные защитные барьеры: ожоги, экзема, дефекты мукоцилиарного механизма и др.
- **Необычные инфекционные факторы**: хронические очаги инфекции при отсутствии адекватной терапии, постоянное реинфицирование (контамнированная вода, ингаляционное оборудование)

ПЕРВИЧНЫЕ ИММУНОДЕФИЦИТЫ

более 70 нозологий, связанных с нарушением ключевых генов, обеспечивающих функционирование иммунной системы В 2007 году включены в МКБ-10 по инициативе Primary Immunodeficiency Disease Classification Committee; International Union of Immunological Societies

- Группа 1 комбинированные Т- и В-клеточные иммунодефициты
- Группа 2 преимущественный дефицит антител
- Группа 3 синдромы иммунодефицитов с хорошо охарактеризованными клиническими признаками
- Группа 4 генетические нарушения иммунной регуляции
- Группа 5 врожденные дефекты фагоцитов (числа, функций и/или того и другого)
- Группа 6 дефекты врожденного иммунитета
- Группа 7 аутовоспалительные заболевания
- Группа 8 дефициты комплемента

ПЕРВИЧНЫЕ ИММУНОДЕФИЦИТЫ

ВТОРИЧНЫЕ ИММУНОДЕФИЦИТЫ

За рубежом вторичные ИД рассматриваются как весьма редкие заболевания, не включены в МКБ-10

Иммунокомпрометиро- ванные состояния

Вирусы: ВПГ, ЦМВ, ЭБ, энтеровирусы, TORCH-комплекс

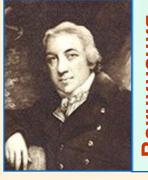
Внутриклеточные патогены: микоплазмы, хламидии, уреа-плазмы

Иммуносупрессивные патогены: ерсинии, клебсиеллы, протеи, стафилококки

- Дефицит и потери белка
- Спленэктомия
- Противоопухолевая химио- и иммуносупрессивная терапии
- Пострадиационные ИД
- <mark>И</mark>нфекции (СПИД)
- Опухоли

Транзиторные ИД: отставание в развитии компонентов иммунной системы у детей раннего возраста

СОСТОЯНИЯ ВЛИЯЮЩИЕ НА ИММУНИТЕТ НОВОРОЖДЕННОГО

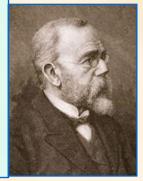

- Внутриутробная задержка роста в основном выражается функциональными нарушениями Т клеточного иммунитета.
- Внутриутробные инфекции вирусно-бактериальной природы угнетают экспрессию рецепторов врожденного иммунитета на гранулоцитах и моноцитах (нарушение распознавания патогенов)
- Значительная гипербилирубинемия приводит к нарушениям микробицидной активности нейтрофилов и снижению пролиферативной активности лимфоцитов
- Прием медикаментозных препаратов: назначение коротких курсов глюкокортикоидных препаратов для предотвращения РДС не влияет на иммунную систему новорожденного
- Внутривенные наркотики и алкоголизм матерей ведут к Т-клеточным нарушениям (CD4+), которые сохраняются вплоть до подросткового возраста
- Курение матерей не ассоциируется с значимыми нарушениями иммунного ответа новорожденного.

ИММУНОТЕРАПИЯ

ИММУНОТЕРАПИЯ – НАЧАЛО, 1796-1908

2008 г. – 100-летие Нобелевской премии И.И. Мечникова и П. Эрлиха

Э. Дженнер


В. Колей

Вакцинация

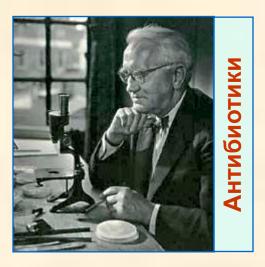
Э. Беринг

Пассивная иммуноТРП

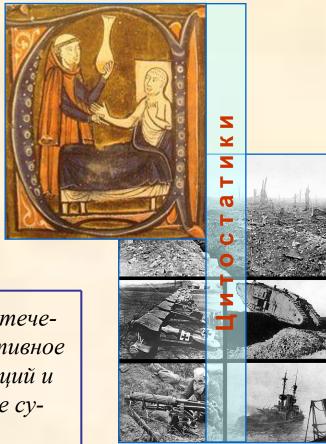
P. Kox

П. Эрлих

Рецепторная те



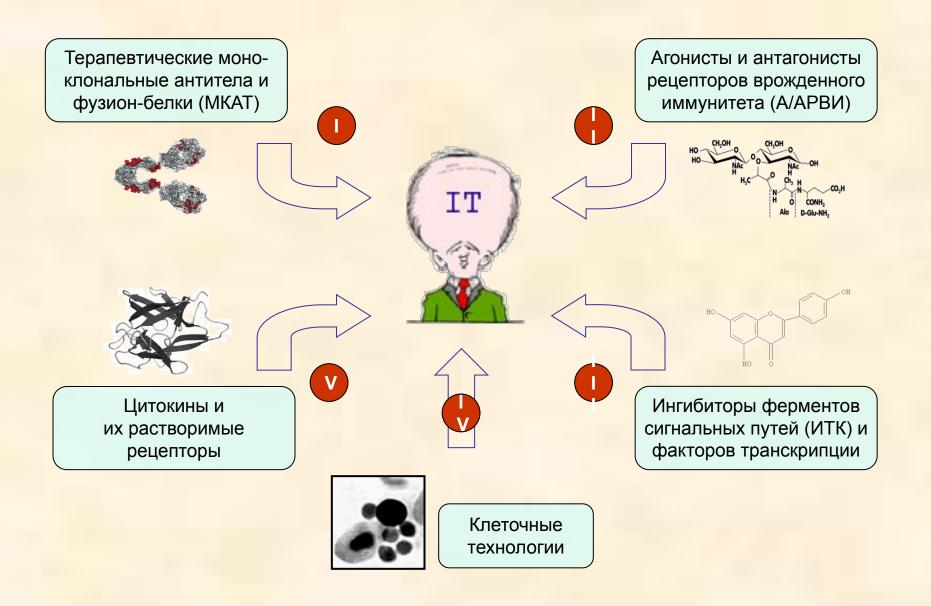
И. Мечников

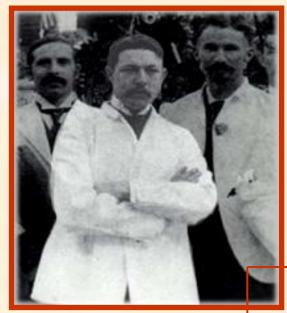

Иммунотерапия опухолей

ИММУНОТЕРАПИЯ – КРИЗИС, 1930-е

А. Флеминг

М. Захария Рази




I Мировая война

Всего за 3 десятилетия заложенное в течении 100-летия первое и очень перспективное направление в фармакотерапии инфекций и опухолей практически прекратило свое существование.

Так продолжалось более 50 лет!

ИММУНОТЕРАПИЯ – РЕНЕССАНС, 1990-е

В 1893 году американский хирург Вильям Колей (William Coley) впервые использовал в медицинской практике неочищенный экстракт лизированых бактерий, получивший впоследствии название «Колей-токсин».

С помощью данного препарата Колей провел курс терапии 894 пациентам с подтвержденным диагнозом «карцинома» или «саркома» и добился 45% увеличения пятилетней выживаемости больных.

иммуномодуляторы микробного происхождения (имп)

взгляд через столетие

```
• 0 поколение – живые бактерии
    # Колей-токсин (Вильям Колей, США, 1893-2004 гг.)
    # БЦЖ (рак мочевого пузыря)
• І поколение – лизаты микроорганизмов
    # Полипатогенные (бронхомунал, имудон, ИРС-19, паспат)
    # Монопатогенные (рузам, постеризан)
• II поколение – частично очищенные компоненты
                                                             инфек-
    # Липополисахариды (продигиозан, пирогенал, лентинан)
                                                             ЦИИ
    # Пептидогликаны (рибомунил, иммуномакс)
    # Рибосомы (рибомунил)
    # Нуклеиновые кислоты (нуклеинат натрия, ридостин)
```

НЕДОСТАТКИ ИМП I и II ПОКОЛЕНИЯ

- Отсутствие четкого понимания механизмов воздействия на иммунную систему
- Лизаты микроорганизмов (I поколение) содержат значительное количество компонентов, подобранных эмпирическим путем. Отсутствует фармакокинетика и фармакодинамика.
- Частично очищенные компоненты (II поколение) высокая токсичность при парентеральном введении (ЛПС патогенетический фактор развития септического шока)

ИМП влияют на иммунную систему иначе, чем вакцины: развитие антиген-специфического иммунного ответа к компонентам препаратов не является лидирующим механизмом их действия

ПРОГРЕСС В ИССЛЕДОВАНИЯХ ВРОЖДЕННОГО ИММУНИТЕТА: PAMP И PRR

РАМР патоген-ассоциированные молекулярные образы (patogen-associated molecular pattern)

- Липополисахарид грам[–]
- Липотейхоевые кислоты грам[+]
- Пептидогликан грам[–] и грам[+]
- Бактериальная ДНК
- Двуспиральная РНК (вирусы)
- Глюканы (грибы)
- Маннаны

```
PRR паттерн-распознающие рецепторы (pattern-recognition receptor)
```

• Эндоцитозные PRR

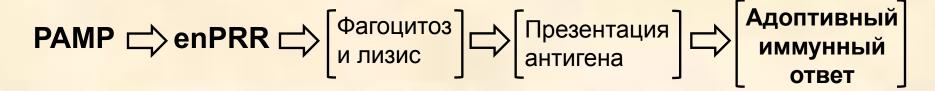
```
# Скавенджер
```

Маннозные

Глюкановые

• Сигнальные PRR

Toll-подобные 1-13


NOD 1-2

РЕЦЕПТОРЫ ВРОЖДЕННОГО ИММУНИТЕТА (PRR)

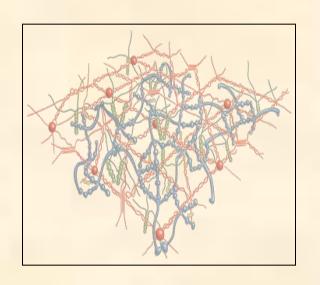
Тип PRR	PRR	Лиганды	Тип патогена
Эндоци-	Маннозный	Углеводы и гликопротеиды с высоким	• грам-[+]/[–],
тозные		содержанием маннозы (маннаны)	• грибы
	Скавенджер	ЛПС, пептидогликаны, липотейхоевые кислоты	• грам-[+]/[–]
Сигналь-	TLR-1	Триациллипопептиды, модулин M. tuberculosis	• грам-[+]/[–]
ные	TLR-2	Липопротеиды большинства патогенов,	• грам-[+],
		пептидогликаны, липотейхоевые и маннуроновые	• грам-[–],
		кислоты, порины Neisseria, атипичные ЛПС,	• грибы,
		факторы вирулентности Yersinia, вирионы CMV,	• вирусы
	TLD 2	ЗИМОЗАН	
	TLR-3	Двунитчатая РНК	• вирусы
	TLR-4	ЛПС, HSP60, маннуроновые кислоты,	грам-[+],
		флаволипиды, тейхуроновые кислоты,	∙ грам-[–],
		пневмолизин, оболочечный белок RSV	• вирусы
	TLR-5	Флагеллин	• грам-[+]
	TLR-6	Диациллипопептиды, модулин, липотейхоевая	• грам-[+],
		кислота, зимозан	• грибы
	TLR-7	Однонитчатая GU PHK	• вирусы
	TLR-8	Однонитчатая GU PHK	• вирусы
	TLR-9	Неметилированная СрС ДНК	• грам-[+]/[–]
	TLR-10, 12, 13	Неизвестны	
	TLR-11	Профилин	
	NOD1	Пептидогликаны (GM-Tri _{Dap})	• грам-[+]/[–]
	NOD2	Пептидогликаны (ГМДП)	• грам-[+]/[–]

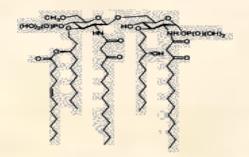
РЕГУЛЯЦИЯ ИММУНИТЕТА ЧЕРЕЗ PRR

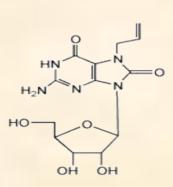
ЭНДОЦИТОЗНЫЕ PRR (enPRR)

СИГНАЛЬНЫЕ PRR (sPRR)

ИМП – АГОНИСТЫ СИГНАЛЬНЫХ PRR


ЭНДОЦИТОЗНЫЕ PRR (enPRR)


СИГНАЛЬНЫЕ PRR (sPRR)



ПРОГРЕСС В МОЛЕКУЛЯРНОЙ МИКРОБИОЛОГИИ: ОТ РАМР К МИНИМАЛЬНЫМ БИОЛОГИЧЕСКИ АКТИВНЫМ ФРАГМЕНТАМ (МБАФ)

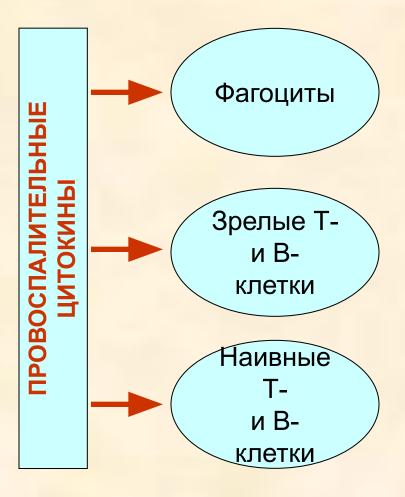
GGTGCAT<u>CG</u>ATGCAGGGGGG
TCCATGGA<u>CG</u>TTCCTGAG<u>CG</u>TT
TCGTCGTT<u>CG</u>AACGA<u>CG</u>TTGAT



КЛИНИЧЕСКИЕ ИСПЫТАНИЯ АГОНИСТОВ И AHTAГОНИСТОВ PRR

Тип препарата	PRR	Клиника			
Агонисты-МБАФ					
ГМДП (пептидогликан)	NOD2	зарегистрированный ИмСт			
GM-TriDap (пептидоглик	ан) NOD1	клинические испытания			
Poly IC-Poly Arg (вир. PH	IK) TLR-3	адъювант			
MPLA (липополисахарид	ر) TLR-4	адъювант, ИмСт			
CpG ODN (бакт. ДНК)	TLR-9 ac	гма, онкология, адъювант			
Химические агонисты					
CRX-675, Ribi529 TLR-4 адъювант, ИмСт					
Имиквимод, изатарибин	TLR-7	зарегистр. противовирусные			
ANA773 TLR-7 противовирусный					
Антагонисты					
Налоксон/налтрексон	TLR-4	нейропатическая боль			
Eritoran (E5564)		одиовоспаление			
Modif. CpG ODN	TLR-9 эні	цефаломиелит (РС)			

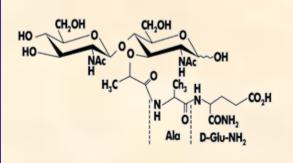
ГЛЮКОЗАМИНИЛМУРАМИЛДИПЕПТИД


(ГМДП или Ликопид)

- ГМДП полусинтетический МБАФ (м.м. 695 Да) пептидогликана (500 кДа),
- Безопасен при парентеральном и энтеральном приеме (отсутствие побочных эффектов, характерных для ПГ). Полностью метаболизируется в организме.
- Через специфический цитоплазматический рецептор NOD2 ГМДП активирует фактор NF-kB в фагоцитах, дендритных, эпителиальных и эндотелиальных клетках
- NFk-В индуцирует продукцию цитокинов воспаления (ИЛ-1, ФНО, ИФН-g, КСФ)

ГЛЮКОЗАМИНИЛМУРАМИЛДИПЕПТИД

(ГМДП или Ликопид)



Эффект цитокинов реализуется в трех направлениях:

- Фагоциты активация фагоцитоза, презентация антигена, продукция свободных радикалов
- Зрелые Т- и В-клетки усиление функций (увеличение продукции Ід, активация киллеров)
- Наивные Т- и В-клетки активация и подготовка к иммунному ответу

ликопид (ГМДП)

ГМДП (Ликопид)

N-ацетилглюкозамин-N-ацетимурамил-L-аланин-D-изоглютамин

- Лекарственная форма ГМДП препарат Ликопид
- Препарат разработан в Институте биоорганической химии РАН, в результате совместных исследований ученых России и Великобритании
- Государственная премия правительства Российской Федерации 1996 года
- Выпускается в виде таблеток 1 и 10 мг
- За 15 лет клинические испытания ликопида проведены более, чем на 1000 больных с различными нозологиями
- Разрешен в педиатрии с «0 возраста» (только таблетки 1 мг)
- Значительно повышает эффективность антибактериальных и противовирусных препаратов

ЛИКОПИД: ПОКАЗАНИЯ В ПЕДИАТРИИ

Лечение и профилактика ВИД у детей и взрослых, проявляющихся в виде вялотекущих или часто рецидивирующих заболеваний инфекционной природы:

- Часто болеющие дети
- Хронические тонзиллиты, отиты, бронхиты и пневмонии
- Фурункулез и пиодермии
- Герпесвирусные инфекции, гепатиты А, В, С,
- Реактивные хламидийные артриты
- Аллергии (бронхиальная астма, атопический дерматит)

ИММУНОТЕРАПИЯ –

это не панацея, а лишь еще один эффективный инструмент в лечении широкого спектра воспалительных заболеваний, которому (увы) еще так далеко до совершенства.