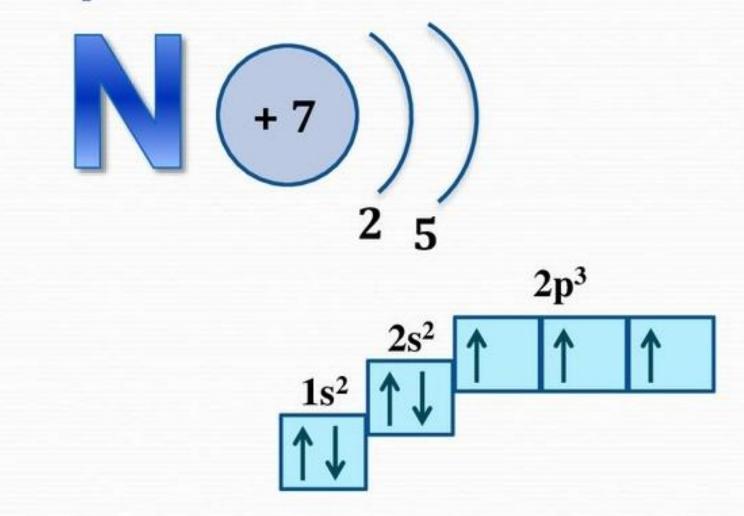
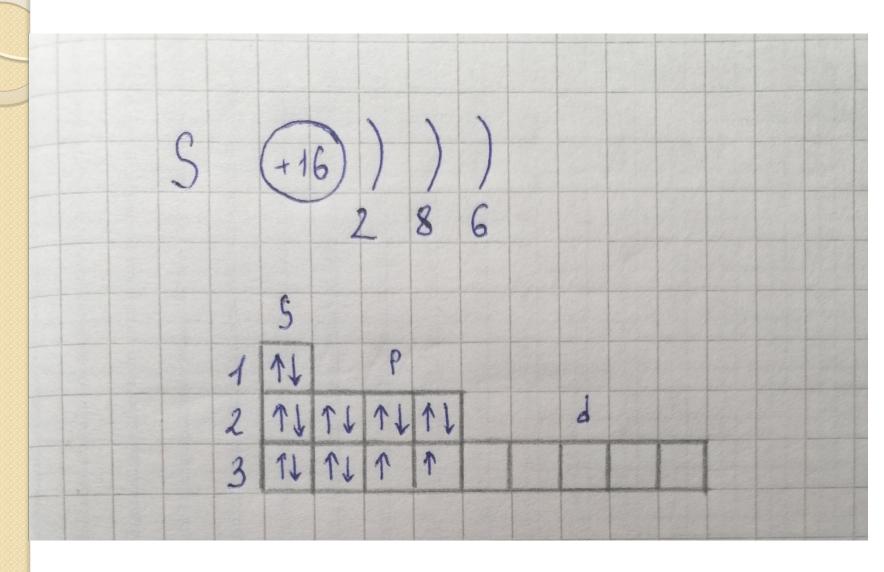
Методика обучения решению заданий ОГЭ по теме «Степень окисления. Окислительновосстановительная реакция». Разбор типичных ошибок обучающихся при решении заданий № 4, 15, 20 ОГЭ по химии.

Выполнила: О. А. Березина, учитель химии и биологии МБОУ «Борисовская сош» Вологодской области, Бабаевского района


Цель

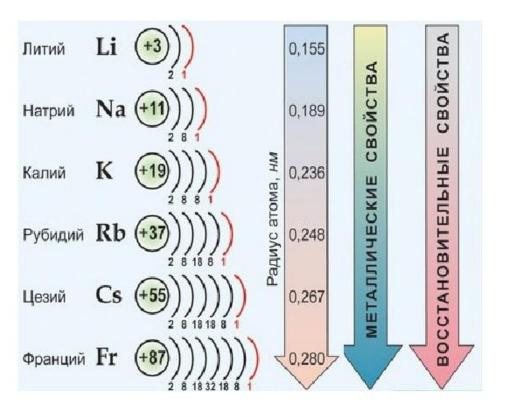
• Рассмотреть этапы формирования у обучающихся навыка определения степеней окисления элементов и уравнивания окислительновосстановительных реакций методом электронного баланса. Разобрать типичные ошибки в заданиях №4, 15, 20.


Степень окисления

• условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле — ионные, то есть все электронные пары смещены к атомам с большей электроотрицательностью.

Строение атома азота

Строение атома серы


Электроотрицательность

Свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях.

 На основе знаний о строении атома формируем представления о закономерностях изменения заряда ядра, радиуса атома, легкости отдачи электронов, энергии ионизации, сродства к электрону, электроотрицательности и свойств элементов в периодах и группах

Изменение свойств элементов в группах (A) сверху вниз

1. Радиус атома

Увеличивается число энергетических уровней.

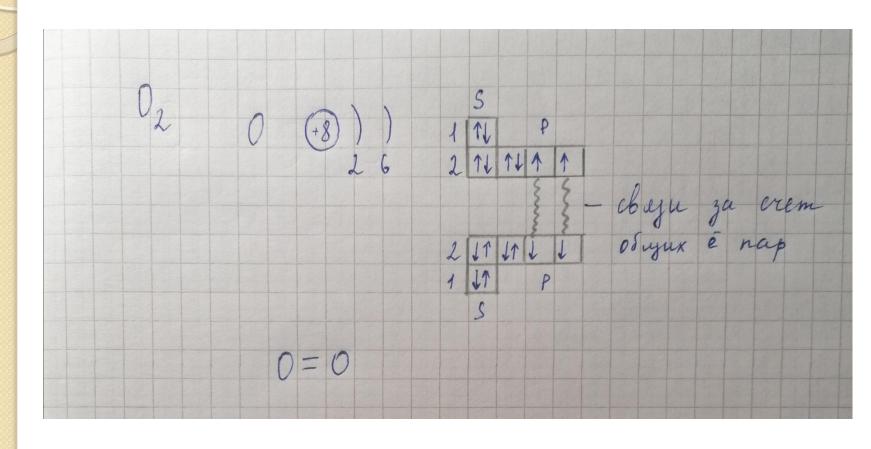
Внешние ē слабее притягиваются друг к другу.

ē атому отдавать легче.

Возрастают металлические свойства.

Франций – самый металличный (сильный) металл

Закономерности в периодах


• Мы пишем слева направо, поэтому появляется ошибка ощущения, что вправо радиус атома должен увеличиваться, что на самом деле неверно, поэтому следует закреплять знания решением заданий по данной теме.

Подсказка

Периодическая система хим	ических элементов	Д.И.	Менделеева
---------------------------	-------------------	------	------------

		-	Группы										
			1		III	IV	V	VI	VII		1	/111	
		1	1 H 1,008 Водород						(H)	Paguyc 70 pao	mem	ушеньи	2 He 4,00 Гелий
	п	2	3 Li 6,94 Литий	4 Ве 9,01 Бериллий	5 10,81 B 5op	6 12,01 С Углерод	7 14,00 N Азот	8 16,00 О Кислород	9 19,00 F Фтор	Kuchothan , OKUCHUTENI Kuchothan		10 Ne 20,18 Неон	
	р	3	11 Na 22,99 Натрий	12 Mg 24,31 Магний	13 28,98 AI Алюминий	14 28,09 Si Кремний	15 30,97 Р Фосфор	16 32,06 S Cepa	17 35,45 СІ Хлор				18 Ar 39,95 Аргон
	и	4	19 К 39,10 Калий	20 Са 40,08 Кальций	21 SC 44,96 Скандий	22 Ті 47,90 Титан	23 V 50,94 Ванадий	24 Сг 52,00 Хром	25 Mn 54,94 Марганец	26 Fe 55,85 Железо	27 Со 58,93 Кобальт	28 Ni 58,69 Никель	
	0		29 63,55 Си Медь	30 65,39 Zn Цинк	31 69,72 Ga Галлий	32 72,59 Ge Германий	33 74,92 AS Мышьяк	34 78,96 Se Селен	35 79,90 Вг Бром				36 Kr 83,80 Криптон
	Ы	5	37 Rb 85,47 Рубидий	38 Sr 87,62	39 Y 88,91 Иттрий	40 Zr 91,22	41 Nb 92,91 Ниобий	42 Мо 95,94 Молибден	43 ТС 98,91 Технеций	44 Ru 101,07 Рутений	45 Rh 102,91 Родий	46 Pd 106,42 Палладий	
			47 107,87 Ag Серебро	Стронций 48 112,41 Cd Кадмий	49 114,82 In Индий	Цирконий 50 118,69 Sn Олово	51 121,75 Sb Сурьма	52 127,60 Те Теллур	53 126,90 I Иод				54 Хе 131,29 Ксенон
		6	55 Cs 132,91 Цезий	56 Ва 137,33 Барий	57 La * 138,91 Лантан	Олово 72 Hf 178,49 Гафний	73 Та 180,95 Тантал	W 183,85 Вольфрам	75 Re 186,21 Рений	76 OS 190,2 Осмий	77 IГ 192,22 Иридий	78 Pt 195,08 Платина	
			79 196,97 Au Золото	80 200,59 Hg Ртуть 88	81 204,38 TI Таллий	82 207,2 Рb Свинец	83 208,98 Ві Висмут	84 [209] Ро Полоний	85 [210] At Acret			1 440	86 Rn [222] Радон
		7	87 F г [223] Франций	88 Ra 226 Радий	89 АС** [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний	106 Sg [266] Сиборгий	107 Bh [264] Борий	108 Hs [269] Хассий	109 Mt [268] Мейтнерий	110 Ds [271] Дармштадтий	
адиус атомя Учиень шаето таль, восста	pacté	n	111 [280] Rg Рентгений	112 [285] Сп Коперниций	113 [286] Nh Нихоний	114 [289] FI Флеровий	115 [290] МС Московий	116 [293] LV Ливерморий	117 [294] TS Теннесий				118 Од [294] Оганесон
mann, boccma	повите,	16					* Ланта	ноиды					
mobine [58 Се 140 Церий	Pi	59 6 г 141 Nd зеодим Нео,	144 Pm [145] Sm 15		64 Gd 157 Гадолиний		66 Dy 162,5 Диспрозий		68 г 167 Эрбий Тул	169 Yb 1	
	7-7-1						** Акти	ноиды					
	90 Th 232 Торий	Pa	91 9 a 231 U 2 эктиний Ур	238 Np	237 Pu [24		96 Ст [247] Кюрий	97 ВК [247] Берклий			m[257] Md	01 102 [258] NO [2 леевий Нобел	59] Lr [2

Химическая связь

Степень окисления

• условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле — ионные, то есть все электронные пары смещены к атомам с большей электроотрицательностью.

Основные этапы формирования понятия «степень окисления»

- Строение атома
- Электроотрицательность
- Закономерности изменения свойств в группах и периодах
- Химическая связь
- Степень окисления

- Постоянная степень окисления фтора F⁻¹
- Постоянная степень окисления водорода H^{+1} . Но: $Na^{+1}H^{-1}$, $Si^{+4}H_4^{-1}$ (разная электроотрицательность Na-0,98; Si-1,8; H-2,20)
- Постоянная степень окисления кислорода O^{-2} . Но: $O^{+2}F_2^{-1}$, $H_2^{+1}O_2^{-1}$

- Степень окисления простых веществ равна нулю: Cl₂⁰, F₂⁰, Fe⁰
 (У простых веществ без индексов ставят степень окисления, как у атома в соединении)
- Степень окисления элементов I, II, III группы равна номеру группы с плюсом (бор имеет высшую +3, низшую -3)
- Исключение: Си, Ag, Au

Соединения меди, серебра и золота

	+1	+2	+3
Cu	Cu ₂ O CuOH	Сu(OH) ₂ (устойчивая)	Cu ₂ O ₃ KCuO ₂
Ag	AgCl, AgNO ₃ (устойчивая)	AgS AgF ₂	$\begin{array}{c} Ag_2O_2 \\ (AgAgO_2) \end{array}$
Au	AuBr AuH	AuSO ₄ AuS	AuBr ₃ (устойчивая)

Делают ошибки в определении степеней окисления меди в соединениях $CuSO_4$, $CuNO_3$

- Степень окисления кислотного остатка постоянна.
- CuSO₄ образован H₂SO₄, расставив степени в которой мы сможем определить верную степень окисления меди +2.
- CuNO₃ образован HNO₃, расставив степени в которой мы сможем определить верную степень окисления меди +1.

Элементы- неметаллы с IV группы имеют переменную степень окисления:

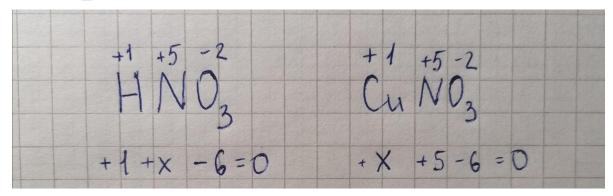
- высшая (максимальная) равна номеру группы с плюсом
- низшая (минимальная) равна номер группы минус восемь.

(У бора высшая <math>+3, низшая -3)

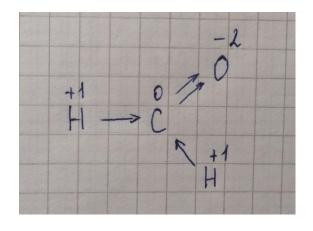
 Металлы во всех сложных соединениях имеют только положительные степени окисления.

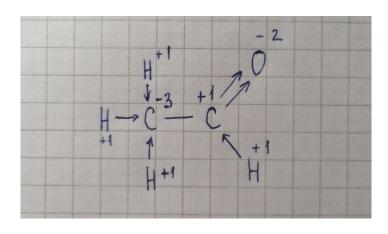
(В соединениях типа $Cu(NO_3)_2$ можно использовать мнемонический прием: степень окисления атома металла равна цифре за скобкой).

• Низшая (минимальная) степень окисления металлов равна нулю.


Нахождение степеней окисления элементов в бинарных соединениях

Краткий алгоритм:


- Ставим степень окисления у того атома, в котором уверены (фтор, кислород, водород, элементы I, II, III группы)
- Умножаем на индекс этого атома
- Делим полученное число на индекс второго атома
- Записываем степень окисления второго атома с противоположным знаком
- Помним: алгебраическая сумма степеней окисления в молекуле равна нулю, а в ионе заряду иона


Способы нахождения степеней окисления элементов в сложных соединениях, которые содержат более трех элементов.

• Алгебраический

• Графический

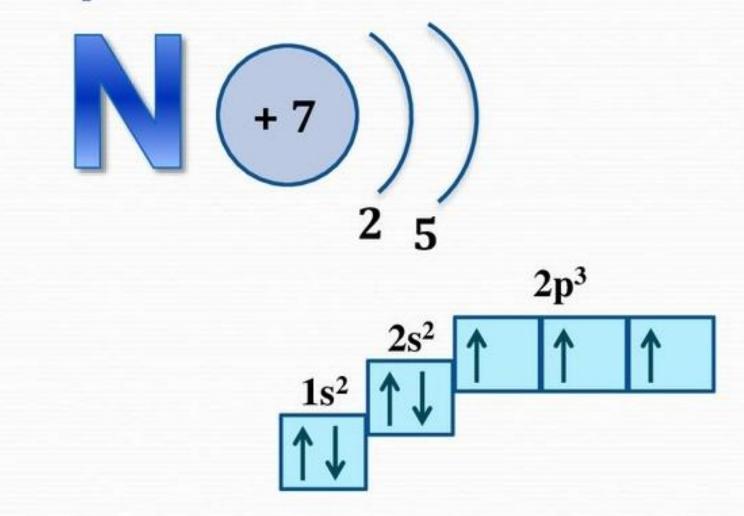
Типы заданий (№4, повышенный уровень, 2 балла)

Решение заданий начинаем от простого к сложному:

- Степень окисления серы в соединении К₂S равна
 - 1)+42)+63)-24)0
- Часто ошибаются в определении степени окисления азота в соединениях аммония (-4 вместо -3)
- Ошибки: определив степень окисления серы -2, ставят ответ «2» вместо «3»

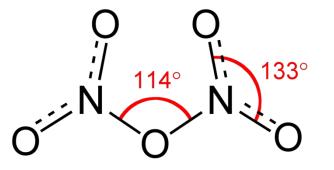
Типы заданий (№4)

• Высшая и низшая степень окисления фосфора соответственно равны:


• Низшие степени окисления магния и углерода соответственно равны:

• Ошибки: «головокружение от успехов», невнимательное прочтение задания

Типы заданий (№4)


- Степень окисления и валентность азота в N₂O₅ соответственно равны:
 - 1)-5 и V 2)+5 и V 3)+5 и IV 4) +3 и V
- Часто совершают ошибки в тех соединениях, в которых степень окисления и валентность не совпадают: пероксиды, азотная кислота, оксид азота (V), соединения аммония, пирит (FeS₂), персульфид водорода (H₂S₂)

Строение атома азота

Оксид азота (V), азотная кислота

 Валентность IV и степень окисления +5 у азота

$$H-O-N$$

Соединения аммония (на примере хлорида аммония)

 Валентность IV и степень окисления -3 у азота

Пероксиды

 Валентность II и степень окисления -1 у кислорода

Соединения серы

 В персульфиде и пирите сера имеет валентность II и степень окисления -1

Типичные ошибки

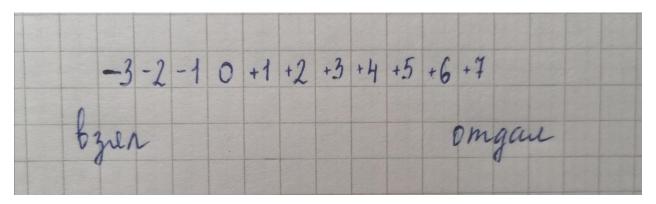
- Неверно определена степень окисления атомов: например, у простого вещества определили степень окисления, как у атома в сложном соединении.
- В ответ вписано значение степени окисления, а не номер ответа.
- Неверное определение несовпадающих степеней окисления и валентностей у атомов в соединениях.

Задание №15 и 20

• В задании номер 15 предлагается определить процесс окисления или восстановления, выбрать окислительно-восстановительную реакцию, поэтому целесообразно после изучения степеней окисления приступить к заданию №20, поскольку оно позволит подготовить и задание No 15.

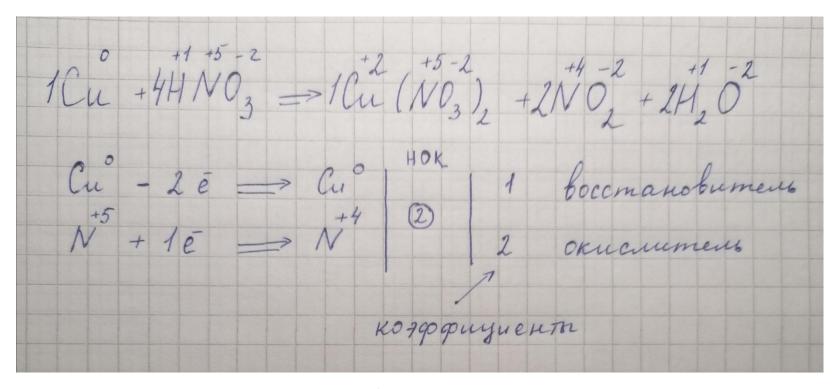
Задание №20 (OBP, высокий уровень, 3 балла)

Алгоритм:


- 1. Переписать схему реакции (часто нитриты и сульфиты записывают как нитраты и сульфаты)
- 2. Расставить степени окисления.
- 3. Определить, какие атомы изменили степени окисления.

Подсказка для составления полуреакций (схемы перехода электронов)

- 4. Составить полуреакции (схемы переходов электронов).
- 5. Определить НОК для принятых и отданных электронов.
- 6. Рассчитать коэффициенты.
- 7. Подписать окислитель и восстановитель. (подписываем сразу, чтобы потом не забыть это сделать)
- 8. Расставить коэффициенты, уравнять ОВР.


Подсказка для определения окислителя и восстановителя

- BBO взял, восстановился, является окислителем.
- OOB отдал, окислился, является восстановителем.
- Строго следить за тем, чтобы обучающиеся проговаривали, что окислителями или восстановителями являются исходные вещества химических реакций (пример далее)

Часто путают понятия «окислитель», «окисление».

Пример оформления

• В данном случае Cu^0 – восстановитель, N^{+5} или HNO_3 – окислитель.

Можно использовать вариант со стрелками под уравнением.

Как найти у себя ошибку?

- Отложить задание.
- Проверить, верно ли записана схема реакции.
- (Часто «теряют» индексы в подобных соединениях: Na_2SO_4 , вместо KNO_2 пишут KNO_3)
- Заново расставить степени окисления.
- Проверить полуреакции (схемы переходов электронов).
- (При переходе из положительных в отрицательные степени окисления и наоборот часто считают неверно: был +6 стал -2, взял 4 электрона, а верно взял 8)
- Проверить, не поставлен ли коэффициент там, где он равен 1.

Задание №20

• Начинаем с простых уравнений, чтобы у обучающихся сформировался навык уравнивания и они чувствовали уверенность в себе. Для этих целей неплохо подходят схемы взаимодействия азотной кислоты с металлами до образования NO₂ или NO, взаимодействия серной и азотной концентрированных кислот с неметаллами.

Задание №20 (примеры)

Для закрепления навыка:

- $Mg+HNO_3 \rightarrow Mg(NO_3)_2 + NO+H_2O$
- $C+HNO_3 \rightarrow CO_2 + NO_2 + H_2O$
- $P + H_2SO_4 \longrightarrow H_3PO_4 + SO_2$
- $PH_3 + H_2SO_4 \rightarrow H_3PO_4 + SO_2 + H_2O$

- Далее, для усложнения мы берем реакции, в которых элементы встречаются в составе нескольких веществ, что сначала приводит детей в тупик, а потом они уже уверенно решают такие задания.
- Определенную сложность вызывают натрий и азот в одном уравнении (Na, N), хром и хлор (Cr, Cl)

Задание №20 (примеры)

Усложнение:

- $S+HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$
- $P + HNO_3 \rightarrow H_3PO_4 + NO_2 + H_2O$
- Na+HNO $_3$ →NaNO $_3$ +NH $_4$ NO $_3$ +H $_2$ О (путают азот и натрий)
- $AgNO_3 + PH_3 + H_2O \rightarrow Ag + H_3PO_4 + HNO_3$

- Далее, мы берем уравнения, в которых встречаются двухатомные молекулы простых веществ, в которых нужно учитывать индекс.
- $KNO_2+KI+H_2SO_4 \rightarrow NO+I_2+K_2SO_4+H_2O$
- $\bullet H_2S+Br_2+H_2O \rightarrow H_2SO_4+HBr$
- Используем правило: коэффициент идет к тому веществу, в котором учитывали индекс у атома.

- После, берем реакции, в которых индекс учитывается у атомов, входящих в состав сложного вещества.
- $Cu₂O+HNO₃ \rightarrow Cu(NO₃)₂+NO₂+H₂O$
- $Cu₂O+HNO₃ \rightarrow Cu(NO₃)₂+NO+H₂O$
- $KNO_2+K_2Cr_2O_7+H_2SO_4$ $\rightarrow KNO_3+K_2SO_4+Cr_2(SO_4)_3+H_2O$

Диспропорционирование:

- $Cl_2+KOH \rightarrow KCl+KClO_3+H_2O$
- $NO_2+NaOH \rightarrow NaNO_2+NaNO_3+H_2O$
- $KClO_3 \rightarrow KCl + KClO_4$

Некоторые не могут найти вторую пару для полуреакций, потому что «хлор уже изменил степень окисления»

Конпропорционирование:

- $NH_4Cl+KNO_2 \rightarrow KCl+N_2+H_2O$ $HCl^{-1}+KCl^{+5}O_3 \rightarrow KCl^{-1}+Cl_2^{-0}+H_2O$
- В последнем случае дети неверно определяют пары атомов для полуреакции.

• Неверно расставлены коэффициенты в уравнении реакции, потому что:

Неверно подсчитано НОК;

Вместо коэффициентов взяты значения количества принятых и отданных электронов;

Не учтены индексы за скобками;

Подсчитаны не все атомы в продуктах реакции или исходных веществах;

При подсчете атомов ошибаются в количестве натрия и азота, хрома и хлора.

- Степени окисления $(N^{+5}O_3^{-2})$ записаны как заряды ионов $(N^{5+}O_3^{-2-})$
- В полуреакциях у атомов элементов, входящих в состав сложного вещества индекс записан, как у простого:

$$Cu_2O+HNO_3 \rightarrow Cu(NO_3)_2+NO_2+H_2O$$

 Cu_2^{+1} -2 e⁻ \rightarrow 2Cu⁺²

● Не уравнены части полуреакции: $Cl_2^0 + 2e^- \rightarrow Cl^{-1}$

- Неверно определен окислитель и восстановитель (наоборот).
- Неверно определено, какой элемент принял, а какой — отдал электроны, значит, и окислитель и восстановитель.
- Краткая запись: окисл., о., ок. здесь точно не понять, что записано: окислитель или окисление, поэтому баллы за такую запись снимаются.

Задание №15 (базовый уровень, 1 балл)

- Самый простой тип определить в схеме процесс окисления или восстановления.
- \bullet A) $C^0 \rightarrow C^{+4}$
- 5) $N^{+5} \rightarrow N^{+2}$
- \bullet B)S⁺⁸ \rightarrow S⁻²
- 1. Окисление
- 2. Восстановление

Ошибка: неверно определяют, взял или отдал электроны; под А углерод восстановитель и выбирают ответ 2.

- Установите соответствие между уравнением реакции и ролью водорода в ней:
- $\bullet A)3H_2 + N_2 \rightarrow 2NH_3$
- $\mathrm{F}H_2\mathrm{O}_2+2\mathrm{KI} \rightarrow 2\mathrm{KOH}+I_2$
- B)CaH₂+O₂ \rightarrow Ca(OH)₂
- 1. Окислитель
- 2. Восстановитель
- 3. И окислитель, и восстановитель
- 4. Ни окислитель, ни восстановитель

- Выберите три реакции, которые относятся к окислительновосстановительным.
- Выберите три реакции, в которых один и тот же элемент служит и окислителем, и восстановителем.

- Выберите три реакции, в которых нитрат серебра является окислителем:
- 1. AgNO3+Fe \rightarrow
- 2. AgNO3+KOH \rightarrow
- 3. AgNO3+Cu \rightarrow
- 4. AgNO3+K2S \rightarrow
- 5. AgNO3+K2SO3+KOH \rightarrow
- В данном задании дети должны дописать реакции на основе базовых знаний (1-4), реакцию 5 можно найти, например, методом исключения.

- Установите соответствие между схемой процесса и веществом-восстановителем в нём, происходящего в окислительно-восстановительной реакции:
- A)C12+F2 \rightarrow
- Б)C12+I2 →
- B)Cl2+NH3 \rightarrow
- 1. Окислитель
- 2. Восстановитель
- 3. И окислитель, и восстановитель
- 4. Ни окислитель, ни восстановитель
- Для 9 класса это сложное задание, нужно опираться на знания о разной электроотрицательности химических элементов.

- Выберите три вещества, при взаимодействии с которыми водород является окислителем:
- 1) Хлор
- 2) Литий
- 3) Магний
- 4) Кислород
- 5) Калий

Задание похоже на предыдущее, здесь нужно так же сравнивать электроотрицательность элементов и помнить исключения из правил по определению степеней окисления.

- Неверно расставлены степени окисления.
- Обучающиеся не различают понятия «окисление» - «окислитель»,
 «восстановление» - «восстановитель»
- Часто думают, что цифры в ответе не могут повторяться, особенно, если не сталкивались с такой ситуацией.

• Теодор Рузвельт

Спасибо за внимание