

Направление подготовки бакалавров «Химическая технология»

Материаловедение и технология конструкционных материалов

Материал предыдущей лекции

Что мы прошли на предыдущей лекции

- Реальный металл в зависимости от температуры может находиться в твердом или жидком состоянии. Это определяется величиной свободной энергии металла. При низких температурах она меньше у **твердого** металла при высоких у жидкого.
- Кристаллизация реального металла идет при температурах ниже температуры плавления, т.к. необходима энергия для образования первого зародыша.
- Реальный метал имеет много дефектов: точечных, линейных, поверхностных за счет чего прочность реального металла значительно ниже идеального.
- Прочность реального металла от количества дефектов зависит сложным образом, отсюда есть да способа упрочнения металла: снижение числа дефектов и повышение их.

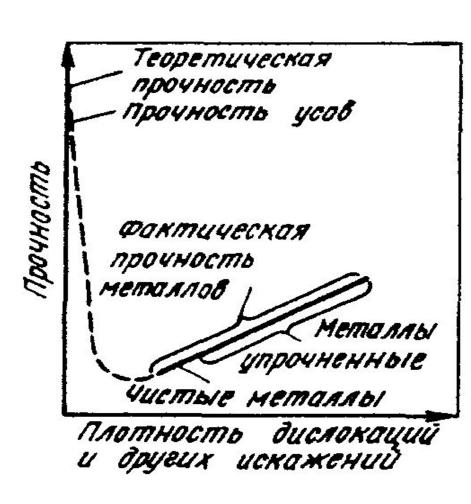
Материал предыдущей лекции

- Реальный металл состоит из зерен, каждое зерно анизоторопно по свойствам, а реальный металл изотропен.
- Размер и форма зерна зависят от условий кристаллизации.
- Размер зерна влияет на свойства металла, поэтому его нужно знать.
- Размер зерна оценивается по баллам. Существует гостированный метод определения величины зерна по эталонным шкалам. С которым вам предстоит познакомиться на лабораторной работе.

Тема 3. Фазы в металлических сплавах. Диаграммы фазового равновесия.

2.1. Фазы в металлических сплавах.

2.2. Диаграммы фазового равновесия сплавов.



Металлические сплавы

Чистые металлы

обычно имеют низкую прочность и, сл-но, невысокие технологические свойства. Поэтому на практике

Поэтому на практике значительно чаще применяют **сплавы**.

Металлические сплавы

- Сплавы это сложные вещества, полученные сплавлением нескольких компонентов.
- **Компонентом** сплава может быть отдельный элемент: другой металл или не металл (азот, углерод, бор) или химическое соединение: карбиды, нитриды, бориды и т.д.
- В зависимости от физико-химического взаимодействия компонентов в сплавах образуются разные фазы.

Металлические сплавы

- За счет большого количества фаз, образующихся при сплавообразовании, в сплавах всегда присутствует большое количество зерен, разного характера, а сл-но, в них больше дефектов.
- Поэтому сплавы всегда более прочны, чем чистые металлы, но менее пластичны.
- Применение сплавов одно из направлений упрочнения металлов.

Определение фазы

Т.к при сплавообразовании образуется большое количество разных фаз необходимо дать определение фазы.

Фаза — однородная гомогенная составная часть системы, характеризующаяся определённым составом, свойствами, типом кристаллической решетки и отделенная от других частей системы поверхностями раздела.

Виды фаз в металлических сплавах

В сплавах возможно образование трёх типов фаз:

- Твердые растворы (замещения и внедрения);
- Упорядоченные твердые растворы;
- Химические соединения.

Твердые растворы замещения

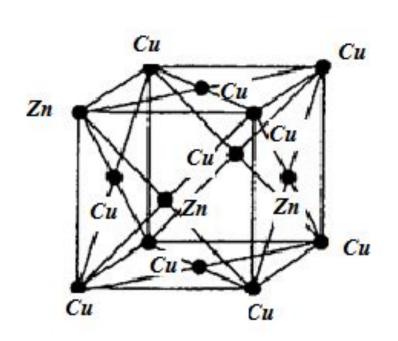
В твердом растворе замещения атомы растворяющегося компонента заменяют атомы растворяющего компонента в его кристаллографической решетке в произвольном порядке.

Этот тип фаз наиболее часто получается при получении сплавов, за счет сплавления двух или нескольких металлов.

Твердые растворы замещения

Твёрдые растворы замещения — фазы, в которых один из компонентов сохраняет свою кристаллическую решетку (обычно концентрация этого компонента в сплаве высокая), а атомы другого или других компонентов располагаются в его решетке, искажая её. (концентрация этого (этих) компонентов в сплаве не высокая).

Эти фазы характерны для латуней, бронз, сплавов алюминия, сплавов железа с никелем, хромом, марганцем и другими металлами.



Пример твердого раствора замещения

Сплав медь – цинк (латунь)

Медь имеет решетку ГЦК. В латунях с содержанием цинка до 37% решетка ГЦК сохраняется.

Медь растворитель, цинк растворяющийся элемент.

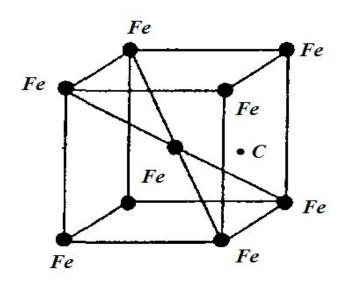
Растворяющиеся компоненты в растворах замещения замещают атомы растворителя в произвольном порядке

Растворы замещения

- Растворы замещения образуются также в таких сплавы, как железо-никель, железо-хром, серебро-золото, никель-медь, медь-алюминий и т.д.
- Таким образом, твёрдые растворы **замещения** обычно образуются между компонентами **металл металл**.

Твердые растворы замещения

- Если диаметры атомов **близки**, то образуются растворы с **неограниченной растворимостью** компонентов друг в друге. Решетка растворяющего компонента искажается мало.
- Сплавы железо никель, медь-золото, медь –цинк и т.д..
- Если диаметры атомов сильно различаются то получаются растворы с ограниченной растворимостью.
- Такая ситуация характерна для сплавов алюминия: алюминий медь, алюминий никель, алюминий-магний и т.д. Решетка растворяющего компонента (алюминия) искажается очень сильно.


Твердые растворы внедрения

- В твердых растворах внедрения атомы растворяющегося компонента располагаются в **порах решетки** растворяющего компонента.
- Характерны для компонентов очень сильно отличающихся по диаметру атома, такого рода растворы образуют компоненты металл неметалл.
- Твердые растворы внедрения это всегда растворы с **ограниченной растворимостью** компонентов, т. к. пор в решетках немного.

Твердые растворы внедрения

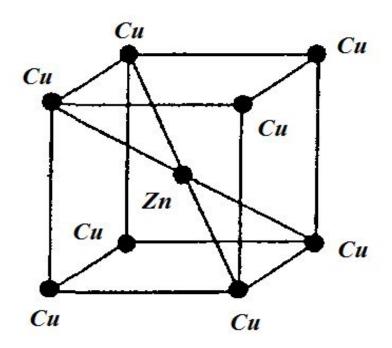
Примером твёрдого раствора внедрения может служить раствор углерода в Fe_{α} . Fe_{α} имеет решетку ОЦК Раствор углерода в Fe_{α} называют ферритом.

Углерод располагается в октаэдрических порах.

К растворам внедрения относятся также растворы азота, углерода, бора, водорода, кислорода и кремния в железе и других металлах

Твердые растворы внедрения

- Твердые растворы внедрения всегда растворы с **ограниченной** растворимостью компонентов друг в друге.
- Растворимость растворяющегося компонента зависит от **величины пор** в решетке растворяющего компонента
- Наибольшая растворимость компонентов в решетке ГЦК, наименьшая в ОЦК.


Упорядоченные твердые растворы

- В упорядоченных твердых растворах атомы растворяющегося компонента замещают атомы растворяющего компонента в его кристаллографической решетке в строго определённом порядке;
- Это всегда растворы замещения и образуются компонентами металл- металл;
- Упорядоченные твердые растворы имеют характерные только для них свойства;
- Им можно присвоить определенную формулу.

Упорядоченные твёрдые растворы

Примером упорядоченного твердого раствора может служить раствор цинка в меди, который образуется при концентрации цинка более 37 %. При его образовании меняется даже вид решетки. Такой раствор имеет решетку ОЦК

Вспомним количество атомов в решетке ОЦК.

Упорядоченному твердому раствору можно присвоить химическую формулу: сплав **CuZn**

Упорядоченные твердые растворы

- Таким образом, сплавы медь цинк (латуни) бывают **однофазные и двухфазные.**
- Однофазные латуни получаются при концентрации цинка меньше 37 % и содержат только одну фазу твердый раствор компонентов в меди;
- Двухфазные латуни получаются при концентрации цинка больше 37 % и содержат две фазы твердый раствор компонентов в меди и упорядоченный раствор цинка в меди.

Химические соединения

Следующим видом фаз, которые могу образоваться при получении сплавов являются — **химические соединения** Химические соединения образуются при взаимодействии элементов сплава друг с другом:

В сплавах можно выделить три вида химических соединений:

- 1. **Интерметаллиды** (соединения «металл металл»). Характерны для сплавов алюминия (CuAl $_2$, Ni $_3$ Al, CoAl, Ti $_3$ Al).
- 2. **Фазы внедрения** (соединения «металл неметалл»): Fe_4N , Mn_4N , Co_4N , Fe_3C , бориды и т.д.
- 3. Примесные и вредные неорганические включения: оксиды и сульфиды: Fe_3O_4 , FeS. и т.д.

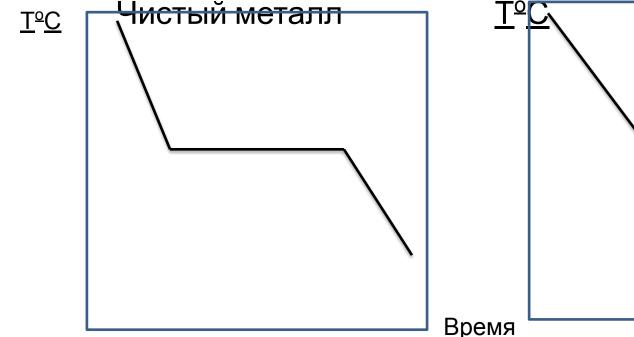
- Фазовый состав сплава зависит от температуры и концентрации компонентов нем.
- Фазовый состав сплава, в свою очередь, определяет свойства.
- Поэтому важно знать этот состав.
- Фазовый состав сплавов при различных температурах отображается с помощью диаграмм состояния.

Диаграммы состояния

Диаграммы состояния имеют еще одно название, их называют диаграммами фазового равновесия.

Диаграммы состояния представляют собой графическое изображение состояния сплавов при изменении температуры. С их помощью можно проследить фазовые и структурные изменения сплавов в процессе их охлаждения или нагрева.

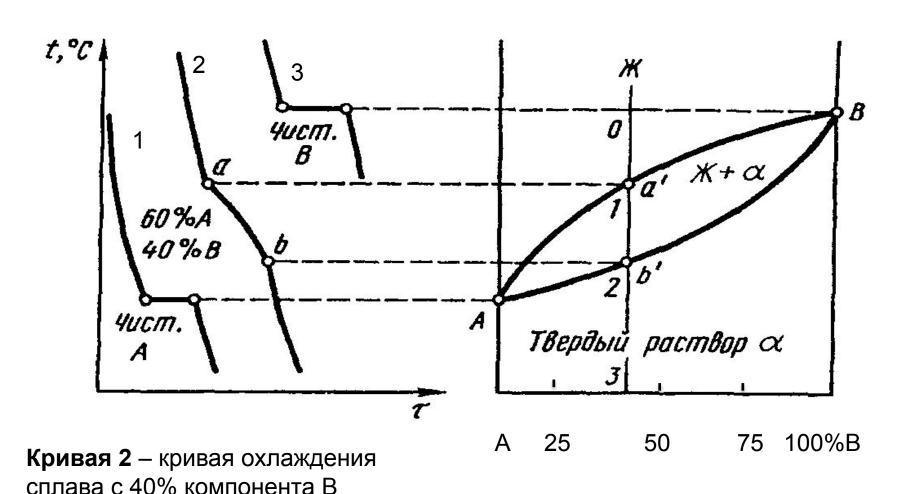
Диаграммы состояния


Диаграмму состояния на плоскости легко построить только для двухкомпонентных сплавов. В этом случае достаточно двух координат, при этом по оси абсцисс откладывается процентный состав сплава, а по оси ординат температура.

Линии на диаграмме состояния строят экспериментально, по заранее построенным **кривым охлаждения**. По линиям и точкам на этих кривых, судят о превращениях протекающих в сплаве при изменении температуры.

Кривые охлаждения металла и сплава

 Опыт показывает, что кривая охлаждения сплава существенно отличается от кривой охлаждения чистого металла.


УНИВЕРСИТЕТ

Построение диаграмм состояния

- Чистый металл кристаллизуется при одной температуре близкой к температуре плавления при медленном охлаждении, а сплав кристаллизуется не при одной температуре, а в некотором интервале температур. Сплавы не имеют постоянной температуры кристаллизации.
- Для получения диаграммы состояния нужно снять кривые охлаждения для нескольких растворов с разной концентрацией растворяющихся компонентов.

Построение диаграммы состояния двух компонентного сплава с неограниченной растворимостью компонентов друг в друге

Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов друг в друге

- Линия A1В –линия начала кристаллизации сплавов называется линией **ликвидус**;
- Линия A2B линия конца кристаллизации сплавов называется линией **солидус.**
- Выше линии A1B сплавы находятся в в виде жидкого раствора;
- Ниже линии A2B сплавы находятся в виде твердого раствора. Обозначим его как α твердый раствор.

Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов друг в друге

- Между линиями ликвидус и солидус сплавы будут находиться одновременно в жидком состоянии, в виде жидкого раствора, и в твердом состоянии, в виде α –твердого раствора.
- Таким образом, диаграмма состояния позволяет узнать:
- а) при каких температурах сплав конкретного состава находится в виде жидкого и твердого раствора.
- б) в каком интервале температур протекает его кристаллизация.

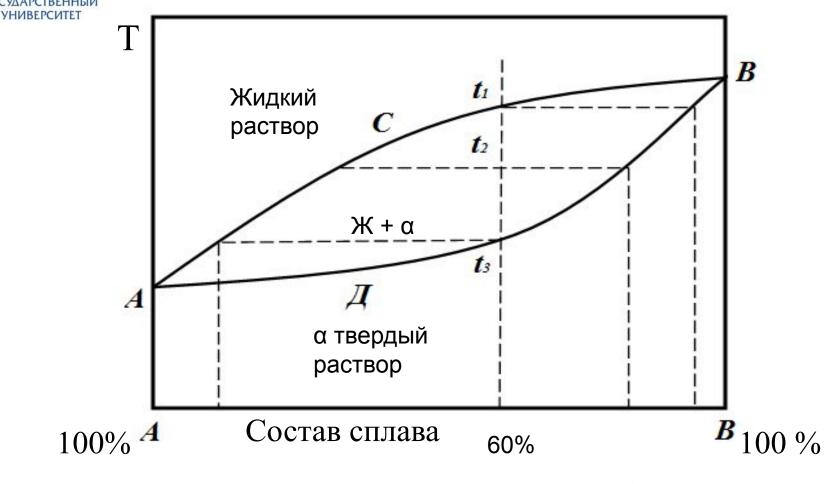


Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов друг в друге

- Диаграмма состояния позволяет определить еще целый ряд характеристик кристаллизующегося сплава.
- Для того чтобы их определить нужно для данного сплава провести на диаграмме несколько горизонтальных линий при различных температурах.
- Линия параллельная оси абсцисс называется канода или нода.

Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов

Применение правила отрезков для сплавов, образующих твёрдые растворы.

Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов

- Канода (или нода) линия, проведенная параллельно оси абсцисс, показывает: 1. состав образующейся твердой фазы, 2. состав остающегося жидкого раствора и 3. количество жидкой и твердой фазы, которое определяется по величине отрезков каноды (правило отрезков).
- Правый отрезок каноды показывает количество жидкой фазы, а левый отрезок количество твердой фазы.

Диаграмма состояния двух компонентного сплава с неограниченной растворимостью компонентов

- Таким образом, при кристаллизации сплавов первые твердые кристаллы будут обогащены тугоплавким компонентом В, а последние низкоплавким компонентом А.
- Т. е. слиток будет неоднороден по составу.
 Неоднородность слитка по составу при кристаллизации сплавов называется дендритная ликвация.
- Дендритная ликвация приводит к неоднородности слитка по свойствам и соответственно она вредна и ее нужно удалять.

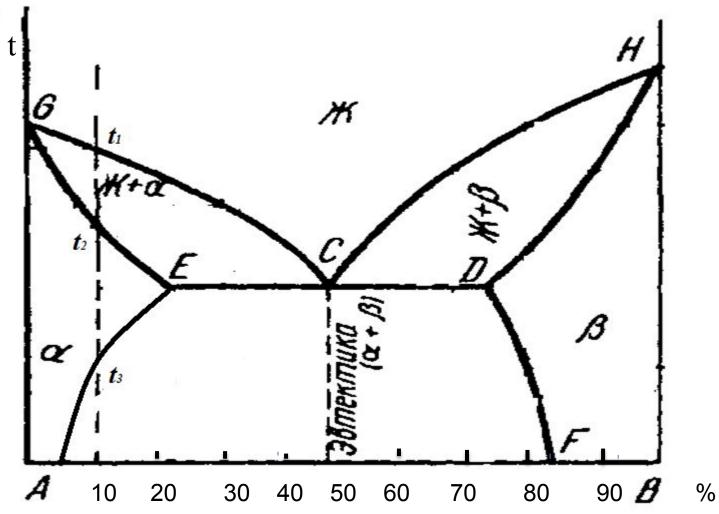


Диаграмма состояния двух компонентного сплава с ограниченной растворимостью компонентов

- Разберем более сложную диаграмму состояния двухкомпонентного сплава с ограниченной растворимостью компонентов в друг друге.
- В этом случае при кристаллизации сплавов в зависимости от концентрации компонентов получаются **два вида твердых сплавов**:
- 1 твердый раствор компонента В в компоненте А. Назовем его твердый раствор α ; 2 твердый раствор компонента А в компоненте В. Назовем его твердый раствор β.
- Если далее мы снимем кривые охлаждения
 (кристаллизации) большого количества сплавов с разным
 содержанием компонентов А и Б, то с помощью их мы
 сможем получить диаграмму состояния такого сплава.

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ _____ Диаграмма состояния двухкомпонентного сплава с ограниченной растворимостью компонентов друг в друге

Диаграмма состояния двухкомпонентного сплава с ограниченной растворимостью компонентов друг в друге

- Линия GCH линия **ликвидус**;
- Линия GECDH линия **солидус**:
- EA линия **изменения растворимости** компонента **B** в компоненте **A**;
- DF линия изменения растворимости компонента **A** в компоненте **B**;
- Точка Е предельная растворимость компонента В в компоненте А;
- Точка D предельная растворимость компонента A в компоненте B;

Диаграмма состояния двухкомпонентного сплава с ограниченной растворимостью компонентов друг в друге

- Точка **C** соответствует сплаву так называемого **эвтектического состава.**
- Сплав эвтектического состава кристаллизуется при одной температуре, как чистый металл, при этом получаются одновременно два вида кристаллов: твердый раствор α и твердый раствор β.
- **Эвтектика** это смесь двух твердых фаз, получающихся при кристаллизации из жидкой фазы.
- Эвтектика одна из **структурных составляющих сплавов**.

Понятие о структуре металлов

- <u>Структура металла</u> это тип, форма, размеры, конфигурация, взаимное расположение областей твёрдого тела, отделённых друг от друга поверхностями раздела.
- Структура понятие **общее** ее изучают не только при исследовании металла, но и керамики, солей, полимеров и т.д.
- Элементы структуры металла: фаза, зерно, структурная составляющая, трещина, раковина, неметаллическое включение, газовый пузырь и т.д.
- Структурная составляющая: эвтектика (смесь двух фаз), эвтектоид (также смесь двух фаз)

Эвтектические составы в практике

- Сплавы эвтектического состава очень важны в машиностроении, так как обладают лучшими литейными свойствами (низкая температура плавления, хорошая жидкотекучесть, малая усадка). Поэтому литейные сплавы, например, алюминия и меди всегда имеют эвтектики, а сплав алюминия АК12 это чистая эвтектика.
- Эвтектики образуются также при **сплавлении солей** и эти эвтектики очень важны, например, при получении алюминия и магния электролизом из расплавов.

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Диаграмма состояния двухкомпонентного сплава с ограниченной растворимостью одного компонента и нерастворимостью другого

Диаграмма состояния двухкомпонентного сплава с не растворимостью компонентов друг в друге

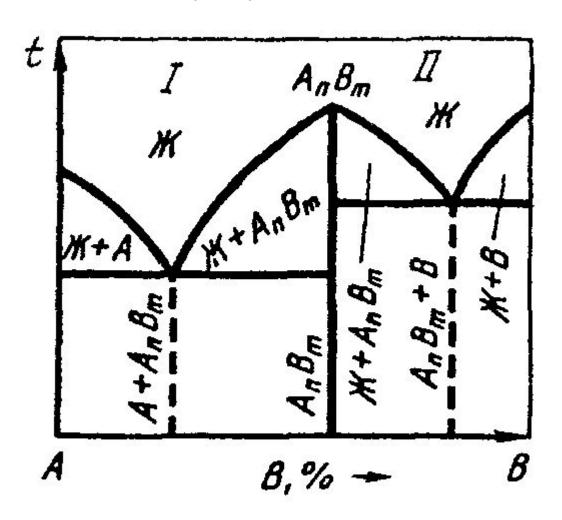
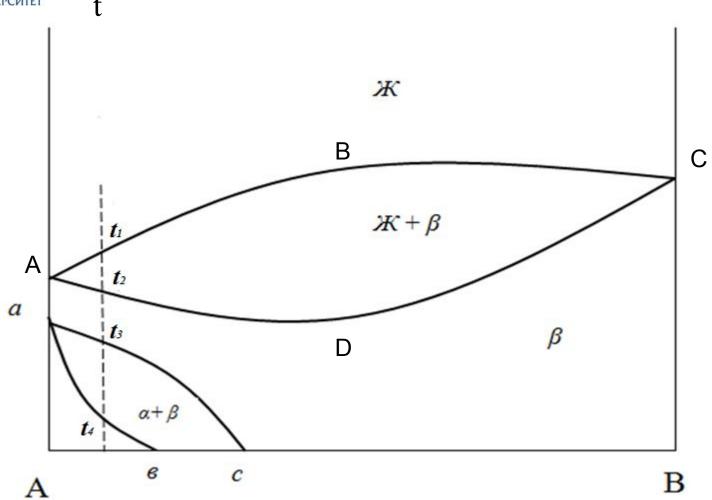

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Диаграмма состояния двух компонентного сплава устойчивым химическим соединением.

Компоненты сплава в друг друге не растворяются


Диаграмма состояния сплава еще более усложняется, если компоненты сплава могут образовывать химическое соединение.

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Диаграмма состояния двухкомпонентного сплава с неограниченной растворимостью и полиморфным превращением компонента **A**

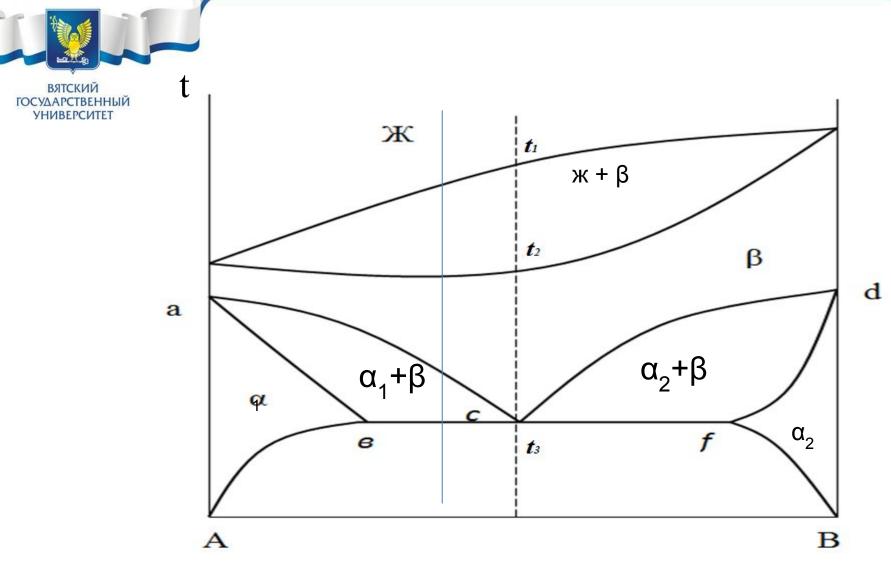


Диаграмма состояния двухкомпонентного сплава с неограниченной растворимостью и полиморфным превращением обоих компонентов

Понятие эвтектоида

- Таким образом при полиморфных переходах также может образоваться смесь двух твердых фаз, подобная эвтектике.
- Только эвтектика получается при кристаллизации из жидкой фазы.
- А механическую смесь двух твёрдых растворов, получающуюся при полиморфном переходе называют <u>эвтектоидом.</u>
- Эвтектоид получается при полиморфном переходе из твердой фазы.

Диаграммы состояния трехкомпонентных сплавов

Диаграмму состояния трехкомпонентного сплава на плоскости нарисовать невозможно, т.к. нужно использовать уже три координаты.

Такие диаграммы трехкомпонентных систем вы проходили на физхимии, но не применительно к металлическим сплавам, а применительно к солям и оксидам.