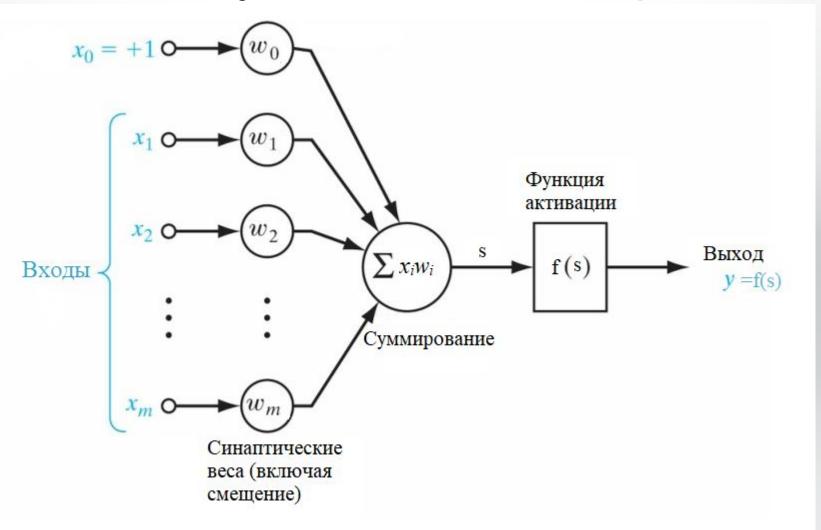

Что такое нейронные сети?

- Мозг состоит из простейших клеток нейронов
- Нейрон элементарная структурная единица обработки информации
- Мозг человека содержит в среднем 100 миллиардов нейронов (10¹¹)
- Очевидно, из простейших нейронов можно собрать довольно сложную конструкцию
- Биологические модели мозга привели к математическим моделям
- Искусственная нейронная сеть компьютерная программа, моделирующая способ обработки мозгом конкретной задачи

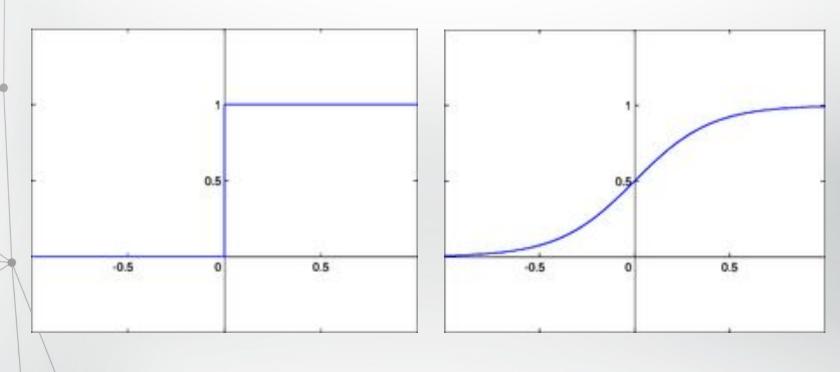
Нейрон головного мозга



Нейрон головного мозга

- Тело нейрона (сома)
- 2. Дендриты
- 3. Аксон
- 4. Синапсы
- 5. **Нервные волокна** Нейрон получает сигналы (импульсы) от аксонов других нейронов через дендриты и передает сигналы, сгенерированные телом клетки, вдоль своего аксона, который в конце разветвляется на волокна. На окончаниях этих волокон находятся специальные образования синапсы, которые влияют на величину импульсов.

Модель искусственного нейрона


Маккалок Дж., Питтс У. Логические исчисления идей, относящихся к нервной деятельности // Автоматы. М.: ИЛ,

1056

Виды активационных функций нейрона

Название	Функция, $\varphi(x)$	Значения
Пороговая (Хевисайда)	$\begin{cases} 0, x < 0; \\ 1, x \ge 0 \end{cases}$	{0,1}
Логистическая	$\frac{1}{1+e^{-kx}}$	(0,+1)
Гиперболический тангенс	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	(-1,+1)
ReLu	max(0,x)	(0, +∞)

Графики активационных функций нейрона

Пороговая передаточная функция

Логистическая функция

Перцептрон Розенблатта

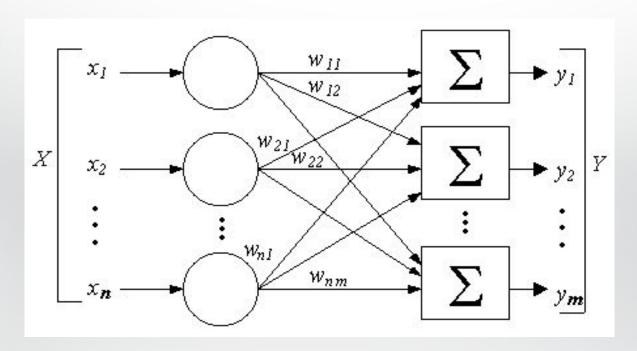
Модель Мак-Каллока – Питтса была реализована Фрэнком Розенблаттом: в 1958 г. в виде компьютерной модели (перцептрона), в 1960 г. в виде электронного устройства, распознававшего рукописные изображения некоторых букв и цифр первого в мире нейрокомпьютера Марк-1.

Подробно свои теории и предположения относительно процессов восприятия и перцептронов Розенблатт описал в 1962 году в книге «Принципы нейродинамики: Перцептроны и теория механизмов мозга»

Типы обучения нейронных сетей

1. Обучение с учителем

Есть обучающая выборка, содержащая данные с правильными ответами

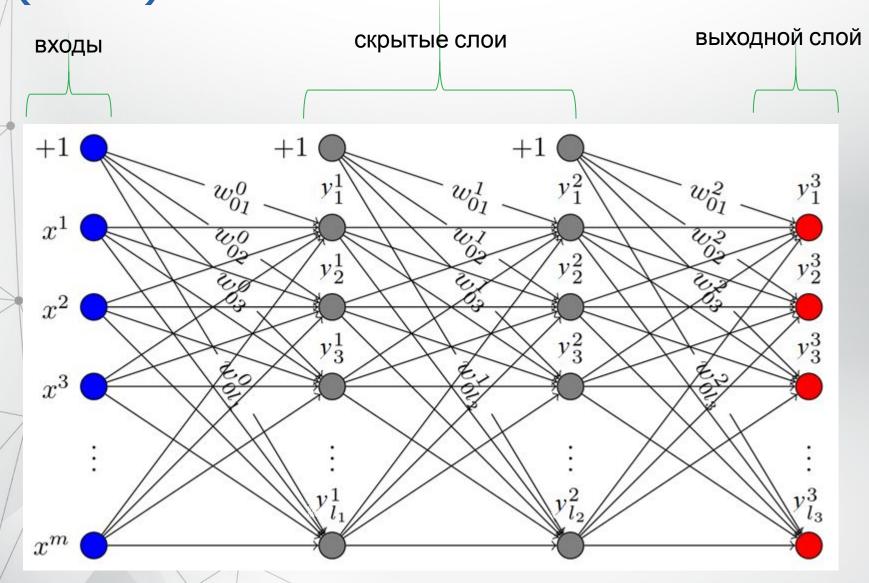

2. Обучение без учителя

Есть набор исходных данных без информации о правильных ответах

3. Обучение с подкреплением

Нет правильных ответов, но в процессе обучения сеть получает сигналы от внешней среды, которая при взаимодействии дает обратную связь. То есть, это обучение через опыт — так же, как учатся люди в течение жизни.

Однослойный персептрон



Обучение нейронной сети – подбор синаптических весов таким образом, чтобы сеть решала поставленную задачу

Алгоритм обучения однослойного персептрона (дельта-правило)

- *Шаг 0.* Проинициализировать элементы весовой матрицы W небольшими случайными значениями.
- *Шаг* 1. Подать на входы один из входных векторов X^k и вычислить ее выход Y.
- *Шаг 2.* Если выход правильный $(Y = Y^k)$, перейти на шаг 4. Иначе вычислить вектор ошибки разницу между идеальным и полученным значениями выхода: $\delta = Y^k Y$.
- **Шаг 3.** Матрица весов модифицируется по следующей формуле: $w_{ij}^{t+1} = w_{ij}^t + \nu \cdot \delta \cdot x_i$. Здесь t и t+1 номера соответственно текущей и следующей итераций; ν коэффициент скорости обучения, $(0 < \nu \le 1)$; x_i i тая компонента входного вектора X^k ; j номер нейрона в слое.
- *Шаг 4.* Шаги 1-3 повторяются для всех обучающих векторов. Обучение завершается, когда сеть перестанет ошибаться.

Многослойный перцептрон (MLP)

Обучение нейронной сети

Для обучения нейронной сети (нахождения оптимальных значений всех весовых коэффициентов) необходимо задать:

- а) топологию сети со всеми функциями активации;
- b) функцию потерь.

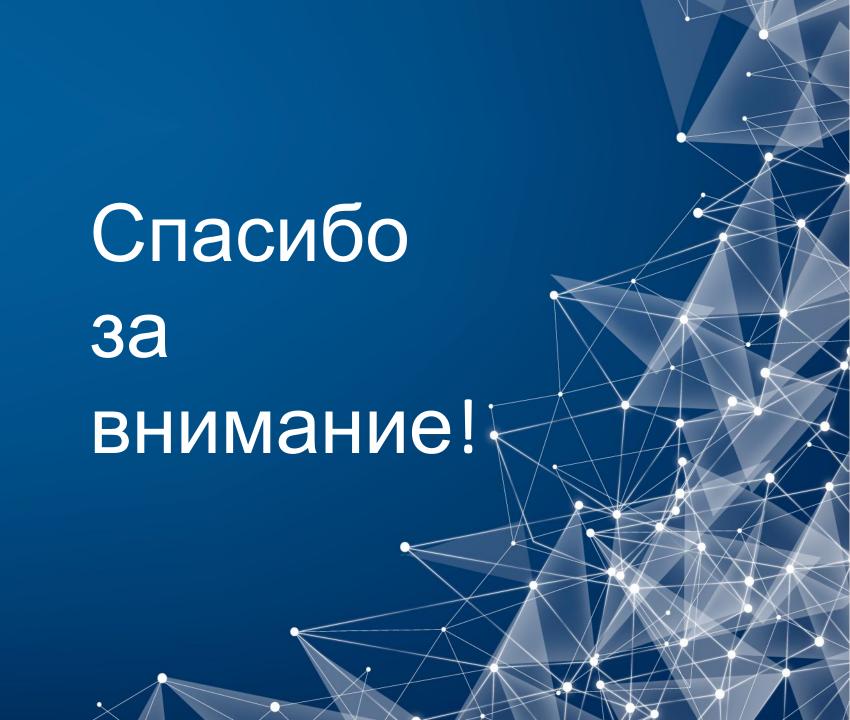
Для обучения нейронной сети MLP обычно используется **метод обратного распространения ошибки** (backpropagation)*.

*Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом .Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.

Квадратичная функция ошибки при обучении с учителем

$$E(W,V) = \frac{1}{2} \sum_{k=1}^{p} (y_k - d_k)^2$$

Теорема Колмогорова


$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^{m} v_i \sigma(\sum_{j=0}^{n} x_j \cdot w_{ji})$$

$$\sigma(s) = \frac{1}{1 + e^{-as}}$$

Теорема Колмогорова. Любая непрерывная функция от n переменных $F(x_1, x_2, ..., x_n)$ на замкнутом ограниченном множестве может быть представлена в виде

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^{2n+1} g_i(\sum_{j=1}^n h_{ij}(x_j)),$$

где g_i и h_{ii} — непрерывные функции, причем h_{ii} не зависят от функции F.

