

Номенклатура органических соединений. Строение атома углерода. Изомерия

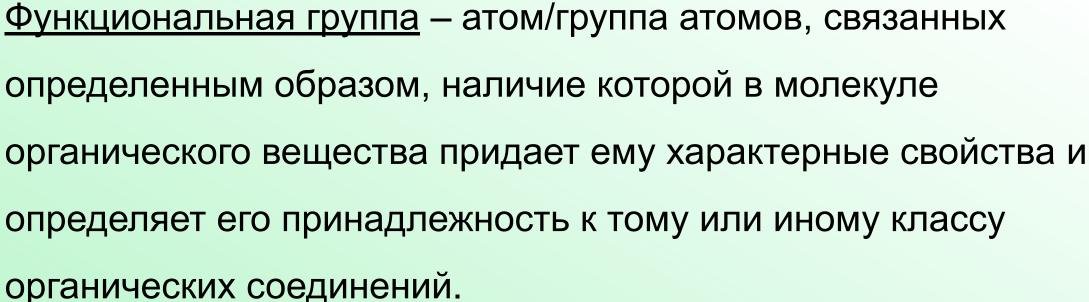
Гомологические ряды

Гомологический ряд - это ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению, где каждый член отличается от предыдущего на гомологическую разность -CH₂-

Общая формула	Орг. соединение	Название
C_nH_{2n+2}	CH ₃ -CH ₃	алканы
C_nH_{2n}	CH ₂ =CH ₂	алкены
		циклоалкан ы
C _n H _{2n-2}	CH≡CH	алкины
	CH ₂ =CH-CH=CH	алкадиены
		циклоалкен
		Ы

_	
	UEHTP

Общая формула	Орг.соединение	Название
C _n H _{2n+1} OH/C _n H _{2n+2}	CH ₃ -CH ₂ -OH	спирты
C _n H _{2n-7} OH/C _n H _{2n-6} O	$H_3C-CH_2-CH=O$	фенолы
C H COH/C H	0	альдегиды
C _n H _{2n+1} COH/C _n H _{2n}	H ₃ C—C—CH ₃	кетоны
C _n H _{2n+1} COOH/C _n H ₂ _n O ₂	CH ₃ −Ć OH	карбоновые кислоты



Общая формула	Орг.соединение	Название
$R^{1}C$ O O O O	H_3C-C O- CH_3	сложные эфиры
$C_nH_{2n}O_n$	H ₂ C-OH CH-O OH HC OH CH-CH OH	углеводы

Общая формула	Орг. соединение	Название
$R^{1} NH_{2} R^{1} NH - R^{2}$ / $R^{2} N - R^{3}$ $R^{1} N - R^{3}$	$H_3C-CH_2-NH_2$ $H_3C-NH-CH_3$ $H_3C-CH_2-N-CH_3$ CH_3	амины
R^{1} CH C^{\prime}	H ₃ C-CH ₂ -CH-C NH ₂ OH	аминокислоты

Определения

Пример. R-Hal – галогенпроизводные

$$R$$
-OH – спирты $-C$ - R – карбонильные соединения (кетоны)

Определения

<u>Радикал</u> – одновалентная частица, которая образуется при

отщеплении одного атома водорода от молекулы

углеводорода.

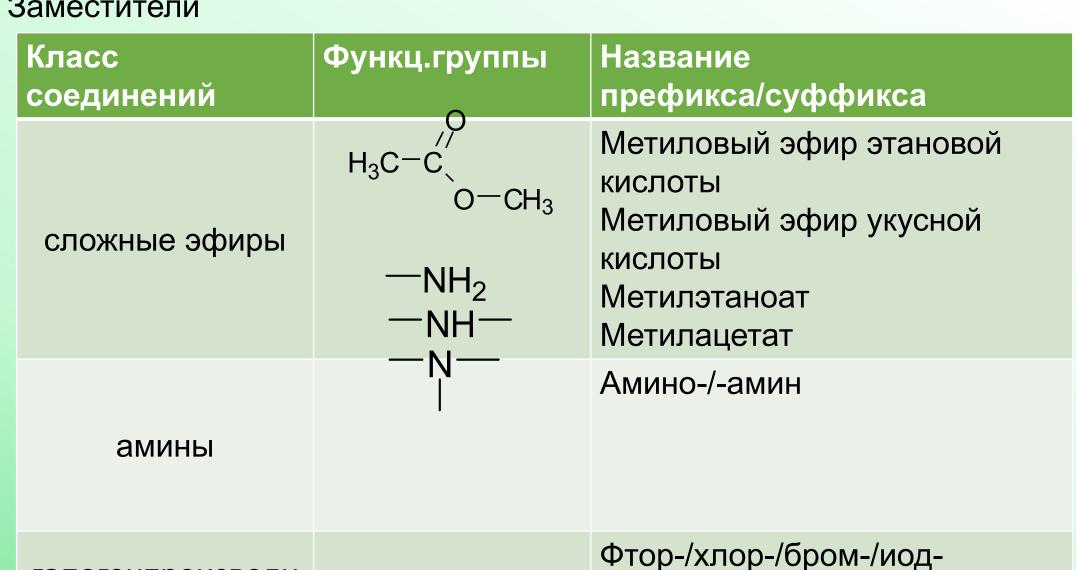
Алк<u>ан</u> → алк<u>ил, алкен</u> → алк<u>енил</u>

Заместители

Назван	вание Название		ие
алкана		радикала	
CH ₄	метан	CH ₃ -	метил
C_2H_6	этан	$C_2^{}H_5^{}-$	ЭТИЛ
C ₃ H ₈	пропан	C_3H_7 -	пропил
C ₄ H ₁₀	бутан	C_4H_9 -	бутил
C ₅ H ₁₂	пентан		
C ₆ H ₁₄	гексан		
C ₇ H ₁₆	гептан		
C ₈ H ₁₈	октан		
C ₉ H ₂₀	нонан		
C ₁₀ H ₂₂	декан		

Назван	ие	Название	
алкена		радикала	
C ₂ H ₄	этен этилен	CH ₂ =CH-	винил
С ₃ Н ₆ пропен		CH ₂ =CH-CH аллил	H ₃ -
пропиле	ЭН		
C_4H_8	бутен		
С ₅ Н ₁₀ пентен			

Заместители



Класс соединений	Функц. группы	Название префикса/суффикса
арены		фенил-
спирты	-OH CH=0	гидрокси-/-ол
альдегиды	— <u>c</u> —	-аль
кетоны	O ,0	-OH
карбоновые кислоты	—ć′ он	-овая кислота

Заместители

галогенпроизводн

ые

-F, -Cl, -Br, -I

-фторид/-хлорид/-бромид/-

ИОДИД

Рациональная номенклатура

Основа названия – название наиболее простого члена гомологического ряда. Остальные соединения – лишь его производные.

- 1. Выбрать основную структуру
- 2. Назвать заместители по возрастанию старшинства.

Рост старшинства:

$$-\text{CH}_3$$
 $-\text{CH}_2-\text{CH}_3$ $-\text{CH}_2-\text{CH}_2-\text{CH}_3$ $-\text{CH}_2-\text{CH}_2-\text{CH}_3$ $-\text{CH}_3$ $-\text{CH}_2-\text{CH}_2-\text{CH}_3$ $-\text{CH}_3$ $-\text{CH}_$

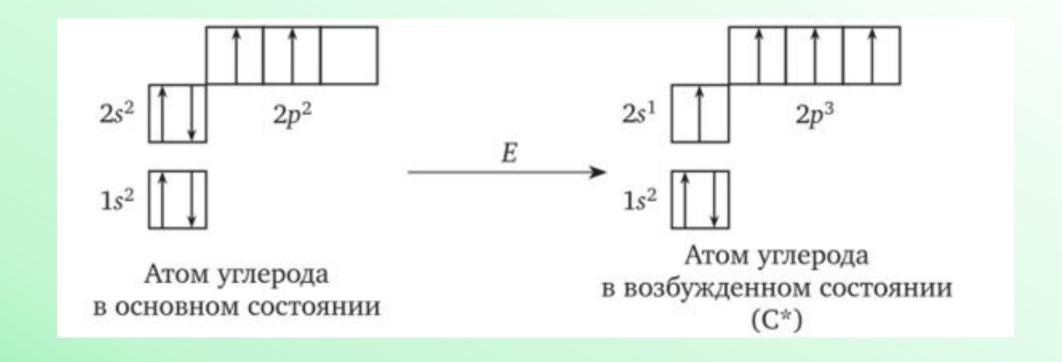
Номенклатура ИЮПАК

- 1. Установить главную углеродную цепь. Она должна содержать тах количество кратных связей, тах число заместителей и быть наиболее длинной.
- 2. Выявить все функциональные группы
- Установить, какая группа является старшей. Ее название отражается в названии соединения в виде суффикса.
- 4. Остальные группы отображаются в названии в видетеоретической и префиксов. Если одинаковых групп больше 1, то прикладной используются умножающие префиксы ди-, три-, ХИМИИ тетра-
- Кратные связи отображаются суффиксом (-ен, -ин)

Международный

союз

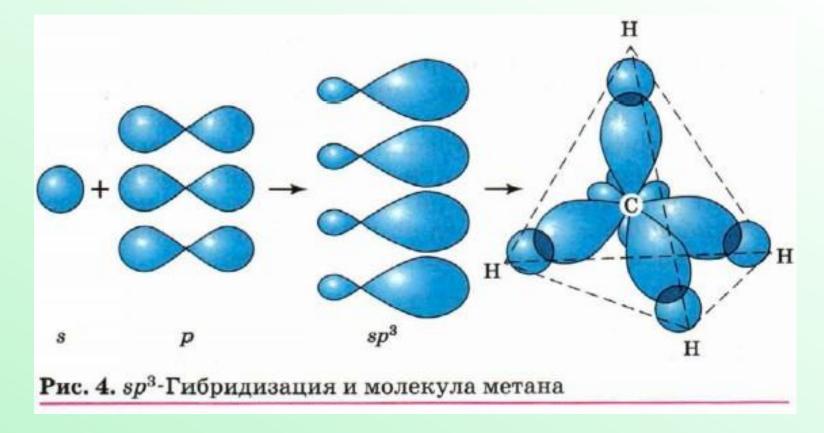
Номенклатура ИЮПАК


6. Пронумеровать главную цепь, придавая кратной связи или старшей группе наименьший из номеров.

Функциональная группа > кратной связи

7. Перечислить префиксы в алфавитном порядке. Умножающие префиксы не учитываются. Указать номер атома углерода, при котором стоит заместитель перед

Строение атома углерода

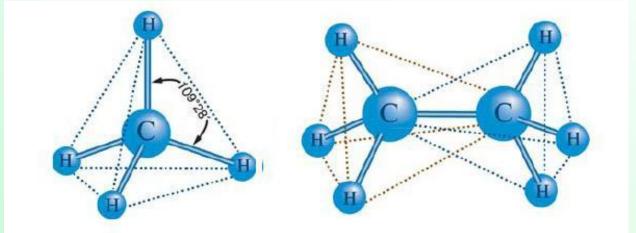


Строение атома

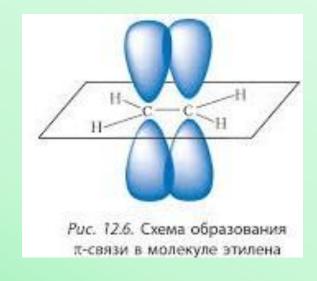
углерода

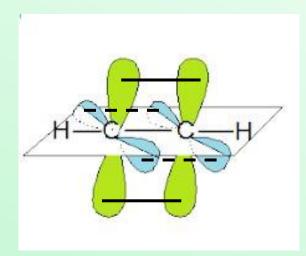
<u>Гибридизация орбиталей</u> - процесс выравнивания электронных орбиталей по форме и энергии.

Типы гибридизации



Тип гибридизац	Кратность связи	Где встречается	Строени е
ИИ	Одинарная, σ	Алканы, соединения без кратных связей (С-С, С-Н и др.)	молекул "Ге траэдр
sp ³	Двойная, σ и	Алкены, алкадиены (сопряженные и	Плоская
sp ²	π Тройная, σ и 2π	ДЗАЛИВР, ВЗИНЬНЯ розвенны связь Блюдиены, связь С≡N	Линейная
Длина ^р связи	211		


> C≡C


Типы гибридизации

одинарная связь

двойная связь тройная связь

Изомерия

<u>Изомерия</u> - явление, заключающееся в существовании химических соединений — изомеров, — одинаковых по атомному составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Структурная изомерия

Изомерия углеродного скелета – все классы ораганических соединений.

$$H_{3}C$$
— CH_{2} — CH_{2} — CH_{2} — CH_{3} — C

Изомерия положения кратной СВЯЗИ

Структурная изомерия

Изомерия положения функциональной

группы

$$H_2N$$
— CH_2 — CH_2 — C
 OH
 H_3C — CH — C
 OH

Изомерия положения заместителей -

арены

Межклассовая

изомерия

Класс	Общая формула	Примеры веществ
алканы	нет межклассо	вых изомеров
алкены		$GH_{S}-CH_{F}GH_{2}$
циклоалканы	C _n H _{2n}	CH ₂
алкины	C _n H _{2n-2}	CH ₃ -C≡C-CH ₃
алкадиены		CH _H =CH-CH=CH ₂
циклоалкены		H_2C —CH

Межклассовая

изомерия

Класс	Общая формула	Примеры веществ
одноатомные спирты	$C_nH_{2n+2}O$	CH_3 -O- CH_3 H_3C - CH_2 - CH - O CH_3 - CH_2 - O
простые эфиры	11 211.2	CH ₃ -CH ₂ -OH
альдегиды	C _n H _{2n} O	H_3C — C — CH_3
кетоны		CH ₃ -C
карбоновые кислоты	C _n H _{2n-2}	OH O HC
сложные эфиры		O—CH ₃

Межклассовая

изомерия

Класс	Общая формула	Примеры веществ _{СН3}
нитросоединения	C _n H _{2n+1} NO ₂	H ₃ C—C—CH ₃ NO ₂
аминокислоты		H ₃ C-CH ₂ -CH-C NH ₂ OH

Простраственная

изомерия

Геометрическая изомерия – в соединениях с С=С.

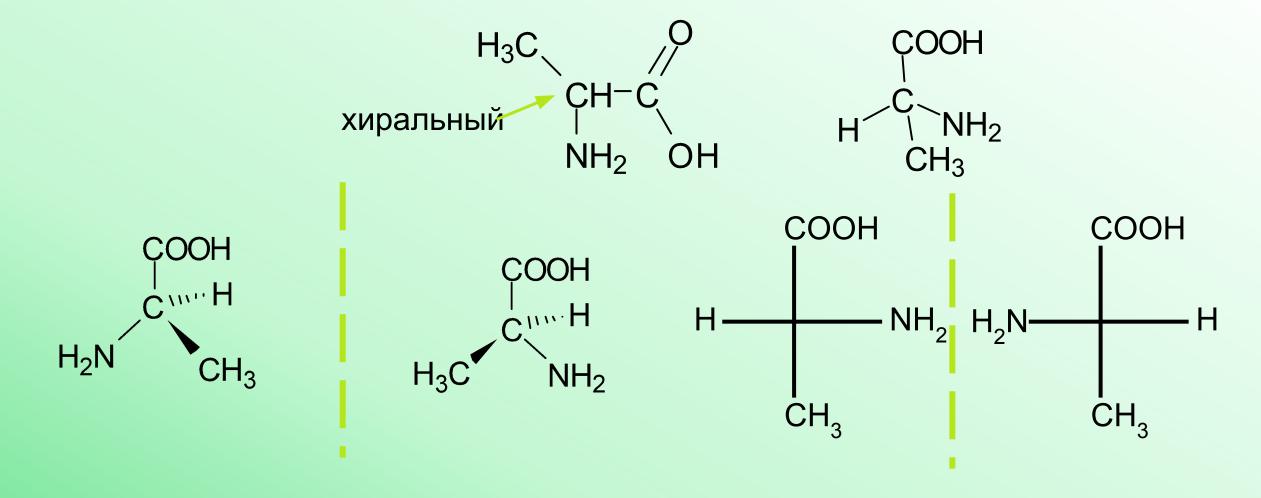
транс-

цис-изомер

Изамер

цис-бутен-2

бутен-2


Простраственная

изомерия

Оптическая изомерия – у всех соединений, где есть атом углерода, у которого все 4 заместителя различны.

