Геометрические преобразования растровых изображений

Содержание

- Передискретизация
- Геометрическое преобразование
- Реконструкция
- Аппроксимации sinc
- Аппроксимация поверхности
- Супердискретизаци
- Разложение преобразований в композицию более простых

Передискретизация

Построение дискретного изображения, которое было подвергнуто геометрическому преобразованию, при условии наличия дискретизации исходного изображения является фактически проблемой передискретизации.

Пусть исходное (непрерывное) изображение задано функцией I(x, y), тогда его дискретизация $I_s(x, y)$ (считаем частоту равной f_s) будет получена умножением на функцию двумерной "решетки«: $I_s(x, y)$ станов $I_s(x, y)$ тогда его дискретизация $I_s(x, y)$ (считаем частоту равной $I_s(x, y)$ тогда его дискретизация $I_s(x, y)$ (считаем частоту равной $I_s(x, y)$ станов $I_s(x, y)$ тогда его дискретизация $I_s(x, y)$ (считаем частоту равной $I_s(x, y)$ считаем частоту равной $I_s(x, y)$ считаем частоту равной $I_s(x, y)$ (считаем частоту равной $I_s(x, y)$ считаем частоту равной $I_s(x, y)$ (считаем частоту равной $I_s(x, y)$) (считаем частоту равном частоту равном частоту равном частоту равном частот

(*)
$$I_{s}(x,y) = I(x,y) \cdot Como_{f_{s}}(x,y)$$

$$= I(x,y) \cdot \sum_{i,j} \sigma\left(x - \frac{i}{f_{s}}, y - \frac{j}{f_{s}}\right), (i,j) \in \mathbb{Z}^{2}$$

$$= \sum_{i,j} I\left(\frac{i}{f_{s}}, \frac{j}{f_{s}}\right) \cdot \sigma\left(x - \frac{i}{f_{s}}, y - \frac{j}{f_{s}}\right).$$

Следовательно, мы получили растр, с атрибутами

$$I_s(i,j) \stackrel{def}{=} I\left(\frac{i}{f_s}, \frac{j}{f_s}\right).$$

Геометрическое преобразование

Пусть преобразование задано функцией:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

Тогда преобразованное изображение равно $I'(x', y') = I(T^{-1}(x', y')),$

дискретизация (с частотой f') преобразованного изображения должна быть получена как

$$\begin{split} &I'(x',y') = I'(x',y') \cdot Comb_{f'_s}(x',y') \\ &= I'(x',y') \cdot \sum_{i',j'} \sigma \left(x' - \frac{i'}{f'_s}, y' - \frac{j'}{f'_s} \right), (i',j') \in \mathbb{Z}^2 \\ &= \sum_{i',j'} I' \left(\frac{i'}{f'_s}, \frac{j'}{f'_s} \right) \cdot \sigma \left(x' - \frac{i'}{f'_s}, y' - \frac{j'}{f'_s} \right) \\ &= \sum_{i',j'} I \left(T^{-1} \left(\frac{i'}{f'_s}, \frac{j'}{f'_s} \right) \right) \cdot \sigma \left(x' - \frac{i'}{f'_s}, y' - \frac{j'}{f'_s} \right). \end{split}$$

Реконструкция

Мы рассматриваем задачу, когда нам неизвестно исходное изображение, а известна только его *дискретизация* I_s.

В таком случае в качестве I следует подставить реконструированное изображение I_r.

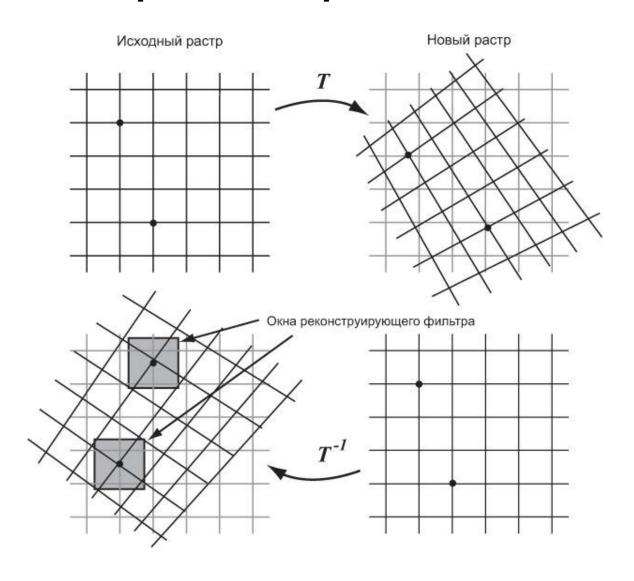
Реконструкция производится с помощью реконструирующего фильтра RFilter:

Аппроксимации sinc

- В идеальном случае, когда начальная частота дискретизации была больше частоты Найквиста и в качестве RFilter выступает функция sinc изображение будет реконструировано точно, т.е. $I_r = I$.
- На практике же в качестве RFilter выступают различные аппроксимации sinc с локальным носителем (см. таблицу), что дает некоторые искажения (в частности, размытие).
- Если в выражение (*) подставить І вычисленное по формуле (**) вместо І и воспользоваться определением (7.11) для атрибутов нового растра І (i', j') то получаем, что $I_s(i,j) \cdot RFilter \left(T^{-1}\left(\begin{pmatrix} \frac{i'}{f_s'}, \\ \frac{i'}{f_s'} \end{pmatrix}\right) \begin{pmatrix} \frac{i}{f_s}, \\ \frac{i}{f_s} \end{pmatrix}\right).$

Таким образом, задача передискретизации сводится к применению дискретной свертки (фактически суммированию) исходного дискретизованного изображения I_s с функцией фильтра RFilter, центрированной в прообразе нового пикселя при преобразовании Т

Передискретизация



Аппроксимация поверхности

Линейные фильтры, используемые в качестве RFilter, фактически осуществляют локальную интерполяцию или аппроксимацию поверхности I_r по точкам дискретизации.

Если мы просто будем считать І_г некоторой поверхностью, то в этом

случае

 $I'_s(i',j') = I_r \left(T^{-1} \left(\frac{i'}{f'_s}, \frac{j'}{f'_s} \right) \right).$

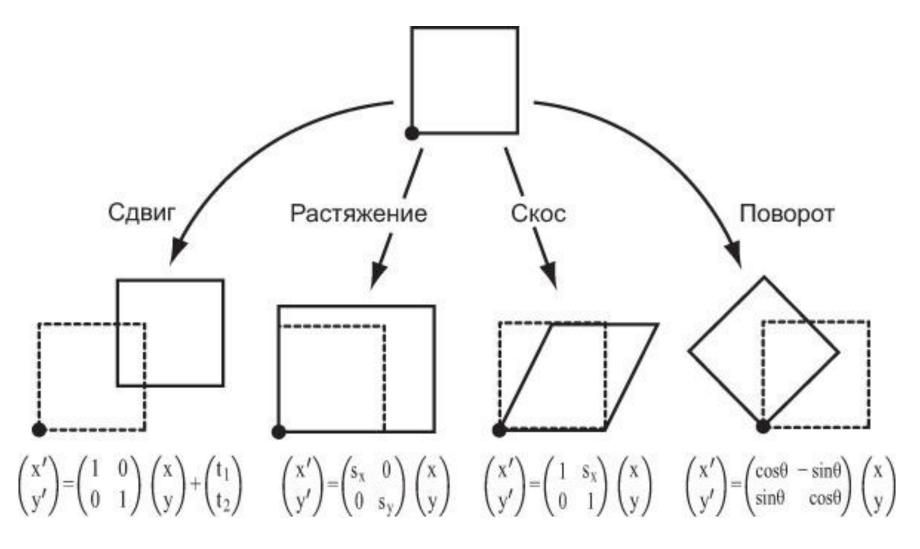
Если в качестве фильтра выступает *функция*-параллелепипед, то при передискретизации новое *значение* будет просто средним по пикселям, попавшим в область носителя (для малого радиуса (1/2) - просто *значение* ближайшего пикселя).

Пирамидальному фильтру соответствует билинейная *интерполяция*.

Более качественные результаты можно получить при использовании бикубической интерполяции, которая соответствует сепарабельному кубическому фильтру (см. таблицу).

Она является стандартной в популярном растровом редакторе Adobe Photoshop.

Аффинные преобразования



Аффинные преобразования

Предметом нашего рассмотрения будут в основном аффинные преобразования: $a_{12} = \begin{pmatrix} x \\ y' \end{pmatrix} = \begin{pmatrix} x \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$,

частным случаем которых являются сдвиги, растяжения, скосы и повороты (см. рис.).

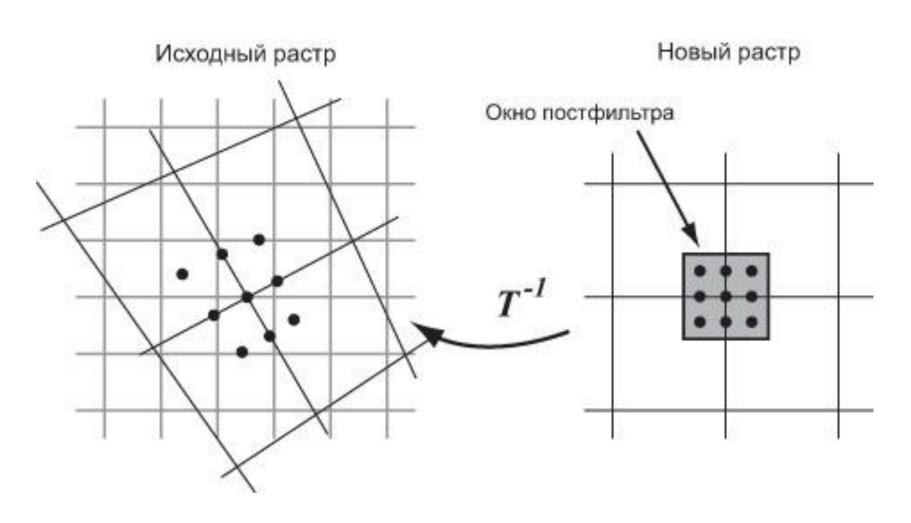
В трехмерной графике подобные проблемы возникают при текстурировании, т.е. наложении искаженных растровых изображений на поверхности объектов, которые затем проецируются на экран.

Там, как правило, речь идет о перспективных преобразованиях (задаются невырожденной трехмерной матрицей)

$$x' = \frac{a_{11}x + a_{12}y + a_{13}}{a_{31}x + a_{32}y + a_{33}},$$

$$y' = \frac{a_{21}x + a_{22}y + a_{23}}{a_{31}x + a_{32}y + a_{33}}.$$

Супердискретизация



Супердискретизация

При перспективных преобразованиях возможны значительные искажения, при которых эффективная частота дискретизации, обратно пропорциональная расстоянию между переведенными точками, может быть значительно больше исходной, которая полагается равной 1 (в пикселях исходного изображения).

В этом случае прибегают к супердискретизации.

Локально для одного пикселя в I' строится промежуточная дискретизация с частотой, большей чем f' (обычно в целое число раз, которое зависит от степени искажения³), а затем по ней с помощью второго этапа дискретной фильтрации (зачастую здесь применяется простейший усредняющий фильтр-параллелепипед) получаем значение интенсивности результирующего пикселя (см. рис.).

Как всегда, на практике, пожертвовав точностью, можно получить более быстродействующие алгоритмы.

Разложение преобразований в композицию более простых

В некоторых случаях имеет смысл раскладывать сложное преобразование в последовательность более простых, для которых существуют эффективные алгоритмы.

Самый простой и полезный пример - представление общего преобразования Т в виде композиции преобразований по столбцам и по строкам. Преобразования, сохраняющие столбцы или строки, можно эффективно распараллелить (по столбцам и строкам соответственно).

Пусть , $T = R \circ C$ где С сохраняет столбцы, а R - строки.

Пусть , $T:(x,y)\mapsto (x'',y'')$

а промежуточный результат $(x', y')(C: (x, y) \mapsto (x', y'), R: (x', y') \mapsto (x'', y''))$

вывод

Тогда

$$T = \begin{pmatrix} t_1(x,y) \\ t_2(x,y) \end{pmatrix}; C = \begin{pmatrix} x \\ c_2(x,y) \end{pmatrix}; R = \begin{pmatrix} r_1(x',y') \\ y' \end{pmatrix}.$$

Следовательно

$$T = \begin{pmatrix} t_1(x,y) \\ t_2(x,y) \end{pmatrix} = \begin{pmatrix} r_1(x,c_2(x,y)) \\ c_2(x,y) \end{pmatrix}.$$

Таким образом, $c_2(x, y) = t_2(x, y)$ и $r_1(x, t_2(x, y)) = t_1(x, y)$.

Для того, чтобы найти r_1 , надо в выражении t_1 вычленить все подвыражения, содержащие у, и привести их к виду $t_2(x, y)$.

После этого, заменив эти подвыражения на у, получим выражение для r_1 .

Пример поворота на угол

$$T(x,y) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Тогда

$$t_1(x,y) = \cos\theta \cdot x - \sin\theta \cdot y,$$

$$c_2(x,y) = t_2(x,y) = \sin\theta \cdot x + \cos\theta \cdot y,$$

$$t_{\text{Тогда}} y = (t_2(x,y) - \sin\theta \cdot x)/\cos\theta \text{ (это, конечно, возможно, когда } \theta \neq \pm 90^\circ). \text{ Отсюда}$$

$$t_1(x,y) = \cos\theta \cdot x - \sin\theta \cdot \left(\frac{t_2(x,y) - \sin\theta \cdot x}{\cos\theta}\right)$$

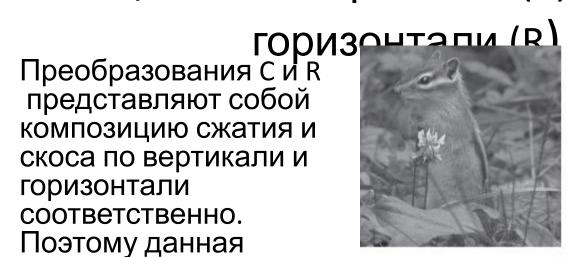
$$= \sec\theta \cdot x - \tan\theta \cdot t_2(x,y).$$

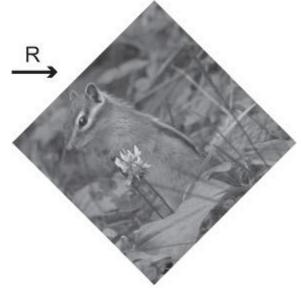
Получаем, что $r_1(x,y) = \sec \theta \cdot x - \tan \theta \cdot y$. Итак, получено следующее разложение (наглядно на рис.

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \sec \theta & -\tan \theta \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \sin \theta & \cos \theta \end{pmatrix}$$

Разложение вращения на скос и смещение по вертикали (С), а затем по

представляют собой композицию сжатия и скоса по вертикали и горизонтали соответственно. Поэтому данная декомпозиция позволяет реализовать поворот с помощью нескольких последовательных применений алгоритма для скосов и масштабирования.





Разложение вращения на 3 скоса

Существует альтернативное разложение на 3 скоса для матрицы поворота (наглядно на рис.), которое позволяет избавиться от существенных искажений при , присущих вышеизложенному алгоритму: $\binom{\cos\theta - \sin\theta}{\sin\theta - \cos\theta} = \binom{1 - \tan\frac{\theta}{2}}{0} \binom{1 - 0}{\sin\theta - 1} \binom{1 - \tan\frac{\theta}{2}}{0}$

Разложение вращения на 3 скоса.

Литература

https://www.intuit.ru/studies/courses/993/16
 3/lecture/4503?page=9