ПОНЯТИЕ ЛОГАРИФМА

Решить уравнение:

$$3^{x} = 6$$

Данное уравнение мы не можем решить известными нам способами, поскольку не можем привести к одному основанию. Возникает вопрос, как решить данное уравнение

Рассмотрим подробнее уравнение $3^{x} = 6$.

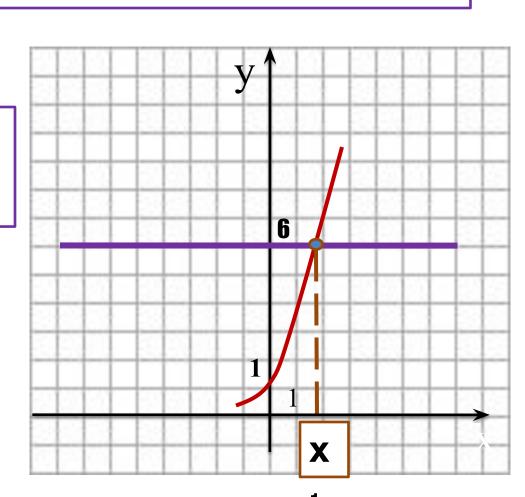
Для исследования его возможных корней, воспользуемся графическим способом.

$$y = 3$$
 экспонента

y = **6** горизонтальная прямая

Получили один корень

Ответ: ?



Решая последнее уравнение, мы столкнулись с проблемой записи полученного ответа. *Прежених знаний* для этого явно недостаточно.

Можно оценить корень $1 < x_1 < 2$, т.к. $3 < 3^x < 9$.

Выводы: уравнение имеет один корень корень – число

Такой вывод можно сделать для любого уравнения вида $a^x = b$, где $a \neq 1, a > 0, b > 0, x \in R$.

Для корней показательных уравнений $a^x = b$

используют запись $\mathbf{x} = log_a \mathbf{b}$, где $log_a \mathbf{b}$ - логарифм числа \mathbf{b} по основанию \mathbf{a} .

Мы получили новую *математическую модель* — **логарифм числа**.

Логарифмом положительного числа b по основанию a, где a > 0, $a \ne 1$, называется показатель степени c, в которую надо возвести число a, чтобы получить число b, т.е.

 $log_a b = c, a^c = b$

Определение логарифма

$$b > 0$$

 $a > 0, a \ne 1$
 $b = a^c$
 $c = log_a b$

Примеры:

log₂16=4,

log₄2=1/2,

$$\log_{\frac{1}{3}} 27 = -3$$

 $\log_{0.25} 4 = -1$

римеры

$$\log_2 8 = 3, m.\kappa. \quad 2^3 = 8$$

$$\log_5 25 = 2$$
, m.k. $5^2 = 25$

$$\log_2 2 = 1, m.\kappa.$$
 $2^1 = 2$

$$\log_2 2 = 1, m.\kappa.$$
 $2^1 = 2$
 $\log_2 \frac{1}{2} = -1, m.\kappa.$ $2^{-1} = \frac{1}{2}$

$$\frac{1}{2} = \frac{1}{9}, m.k. \quad \frac{2}{3} = \frac{2}{9}$$

$$\log_3 \frac{1}{9} = -2, m.k. \quad 3^{-2} = \frac{1}{9}$$