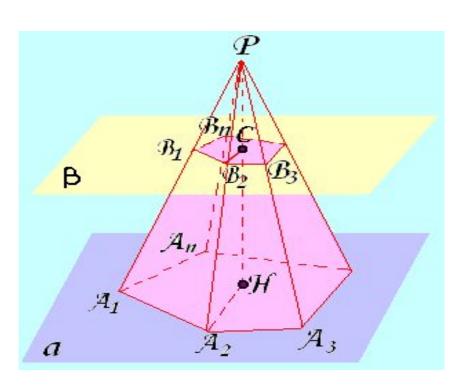
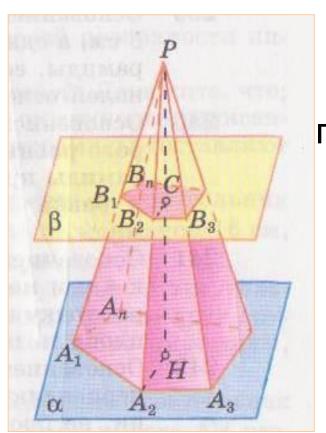
Усеченная пирамі





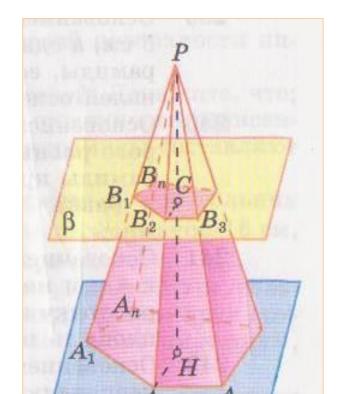
Возьмем произвольную пирамиду $PA_1A_2...A_n$ и проведем секущую плоскость β | |α основания пирамиды и пересекающую боковые ребра в точках $\mathcal{B}_{p}, \mathcal{B}_{p}, \dots, \mathcal{B}_{p}$. Плоскость β разбивает пирамиду на 2 многогранника. Многогранник, гранями которого являются пугольники $\mathcal{A}_{r}\mathcal{A}_{2}\dots\mathcal{A}_{n}$ и $\mathcal{B}_{_{1}}\mathcal{B}_{_{2}}\dots\mathcal{B}_{_{n}}$ (нижнее и верхнее основания), расположенные в параллельных плоскостях, и nчетырехугольников $\mathcal{A}_{r}\mathcal{A}_{s}\mathcal{B}_{s}\mathcal{B}_{r}$, $\mathcal{A}_{\gamma}\mathcal{A}_{\beta}\mathcal{B}_{\beta}\mathcal{B}_{\gamma},\ldots,\mathcal{A}_{n}\mathcal{A}_{\beta}\mathcal{B}_{n}$

<u>Еще одно определение усеченной</u> пирамиды. Тело, получающееся из пирамиды, если отсечь ее вершину

плоскостью, параллельной основанию, называется

усеченной

Усеченную пирамиду с основаниями $A_1A_2...A_n$ и $B_1B_2...B_n$ обозначают так: $A_1A_2...A_nB_1B_2...B_n$.



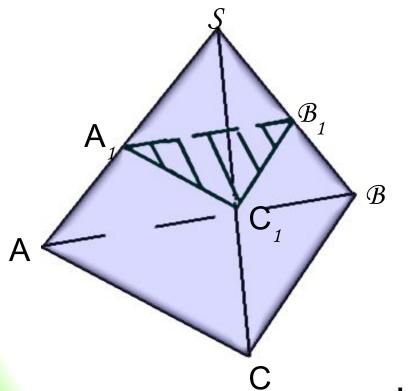
Четырехугольники

 $A_{1}A_{2}B_{2}B_{1}, A_{2}A_{3}B_{3}B_{2}, ...,$ $A_{n}A_{1}B_{1}B_{n}$ — **боковые грани**, n —угольники $A_{1}A_{2}...A_{n}$ и $B_{1}B_{2}...B_{n}$ — **основания** усеченной пирамиды.

Отрезки $A_{1}B_{1}, A_{2}B_{2},$ $A_{3}B_{3},..., A_{n}B_{n}-$ **боковые ребра** усеченной пирамиды.

Теорема (свойство усеченной пирамиды):

«Боковые грани усеченной пирамиды – трапеции».



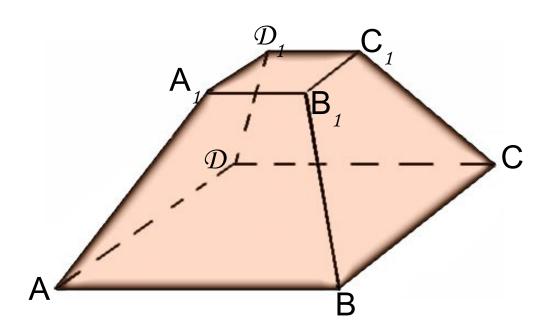
Дано: АВСА В С — усеченная пирамида, полученная сечением пирамиды SABC плоскостью (А В С) | | (ABC).

<u>Доказать:</u>

четырехугольники АА,С,С,

Определения.

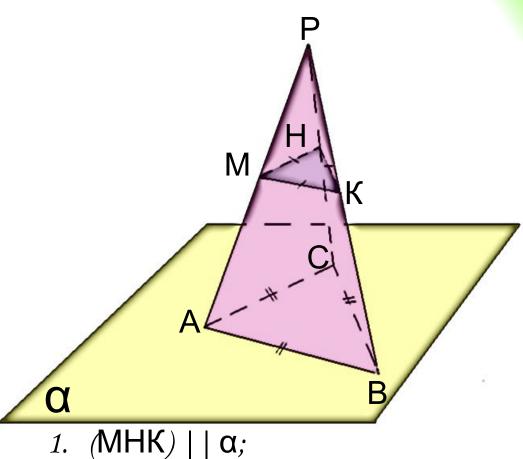
Площадью боковой поверхности усеченной пирамиды называется сумма площадей ее боковых граней.



$$S_{\text{БОК.}} = S_{\text{AA}1\text{B}1\text{B}} + S_{\text{BB}1\text{C}1\text{C}} + S_{\text{CC}1\mathcal{D}1\mathcal{D}} +$$

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной плоскости основания.

Основания правильной усеченной пирамиды – правильные многоугольники а



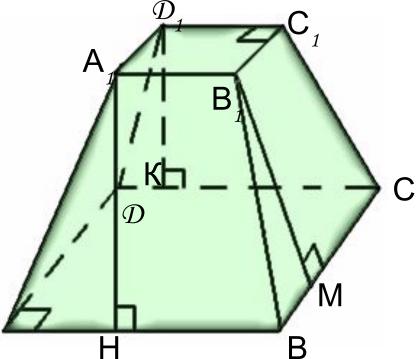
2. ACHM,AMKB,BCHK – равнобедренные трапеции, т.е. AM=KB=HC

Высоты боковых граней правильной усеченной пирамиды называются апофемами.

1. $ABCDA_{1}B_{1}C_{1}D_{1}-$ правильная усеченная пирамида;

2. ABC \mathcal{D} и $A_{_{1}}B_{_{1}}C_{_{1}}\mathcal{D}_{_{1}}-$ квадраты;

3. A_1H , B_1M , \mathcal{D}_1K – апоф



Теорема:

«Площадь боковой поверхности правильной усеченной пирамиды

равна произведению полусуммы периметров оснований на апофему».

ок. пр. пир. —2 (P +P) · d

Теорема.

<u>Объем *V*усеченной пирамиды</u>,

высота которой равна \hbar , а площади оснований равны \mathcal{S} и \mathcal{S}_{1} , вычисляется по формуле

$$V_{ycesnup} = \frac{1}{3} \cdot h \cdot \left(S + S_1 + \sqrt{S \cdot S_1}\right)$$

Домашнее задание:

- Внимательно прочитайте лекцию;
- Сделайте краткий конспект в тетради;
- Сделайте чертеж усеченной пирамиды, запиши все формулы;
- Скрин лекции загрузить в программу Платонус.

Спасибо за работу на уроке

Рефлексия

• Ваше настроение

