

КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ – ЭТО ДВИЖЕНИЕ, ОБЛАДАЮЩЕЕ ОПРЕДЕЛЕННОЙ СТЕПЕНЬЮ ПОВТОРЯЕМОСТИ

Характеристики колебательного движения.

- 1) Смещение;
- 2) Амплитуда;
- 3) Частота;
- 4) Период;
- 5) Циклическая частота;
- 6) Фаза;
- 7) Начальная фаза

Механические колебания — это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

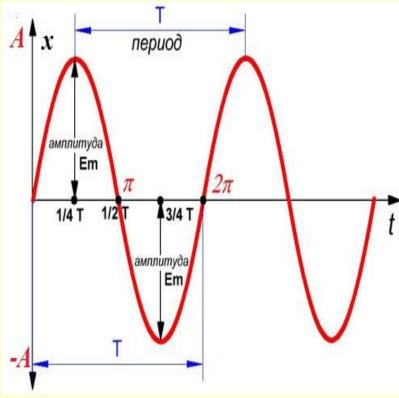
Гармонические колебания

Гармоническими называются колебания, которые происходят по закону синуса или косинуса.

Возникают, если на тело действует сила пропорциональная смещению и направлена к положению равновесия, т.е. вида:

$$F = -kx$$

Такая сила называется возвращающей


Координата тела

(смещение от положения равновесия) зависит от времени по закону

 $x = A\sin(\omega t + \alpha),$

где А – амплитуда колебаний

ω - циклическая
 частота колебаний
 ωt+α - фаза колебаний
 α – начальная
 стадия колебаний

<u>Период</u> Т – время одного полного колебания.

Выражается в секундах.

$$T = \frac{2\pi}{\omega}$$

<u>Частота</u> (линейная) у - число полных колебаний за единицу времени. Выражается в герцах (Гц).

$$\nu = \frac{1}{T} \qquad v = \frac{\omega}{2\pi} \qquad \upsilon = \frac{N}{t}$$

<u>Число колеоаний</u>, происходящих за время t

Формулы для нахождения периола физически

периода.

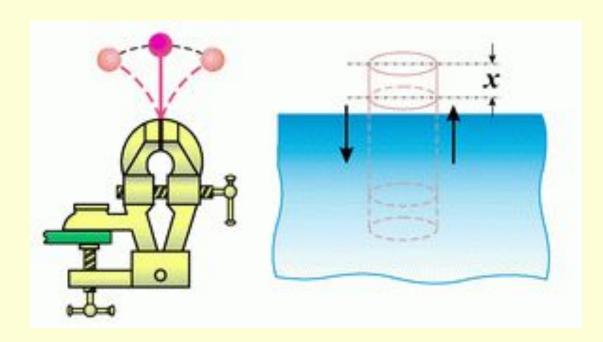
$$T=2\pi\sqrt{rac{l}{g}}$$
 - период колебаний математического маятника

$$T = 2\pi \sqrt{\frac{m}{k}}$$
 - период колебаний пружинного маятника

l - длина нити маятника

 ускорение свободного падения тасса груза

k - жесткость пружины


По характеру физических процессов в системе, которые вызывают колебательные движения, различают три основных вида колебаний:

свободные

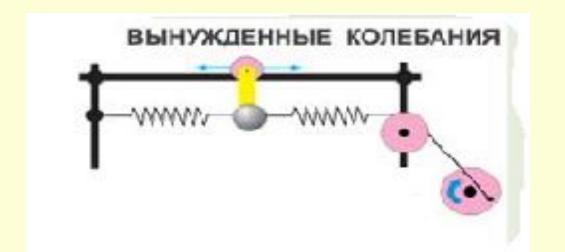
вынужденны е

автоколебания

• Свободные колебания — это колебания, которые возникли в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

СВОБОДНЫЕ КОЛЕБАНИЯ

 Незатухающие солебания – если силами трения и сопротивления пренебречь
 колебания и трения и можно можно пренебречь


- 1. Амплитуда колебания не изменяется
- 2. Полная механическая энергия колебаний сохраняется

Затухающие колебания — кроме вращающей силы действуют силы трения и сопротивления

- 1. Амплитуда с течением времени уменьшается
- 2. Полная механическая энергия за счет работы сил сопротивления

Вынужденные колебания — это колебания, которые происходят под действием внешней, периодически изменяющейся силы.

- 1.Амплитуда установившихся вынужденных колебаний не изменяется
- 2. Частота определяется частотой внешнего воздействия
- з.Амплитуда зависит от частоты внешнего воздействия

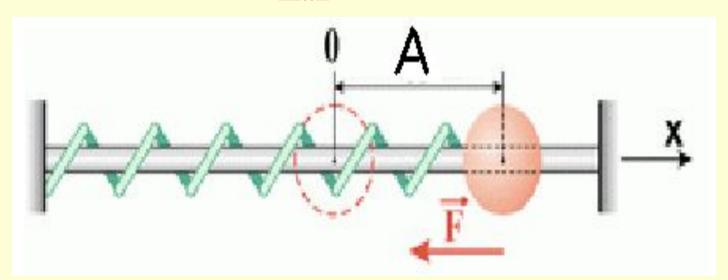
Автоколебаниями называются незатухающие колебания, которые могут существовать в системе без воздействия на неё внешних периодических сил.

Часы с балансиром.

Спусковой механизм часов:

1 — балансир;

2 — анкерная вилка;


3 — спусковое колесо

Маятниковые часы

Резонанс – резкое увеличение амплитуды колебаний при совпадении частоты внешнего воздействия с частотой собственных колебаний системы

<u>Амплитуда</u> — наибольшее смещение от положения равновесия.

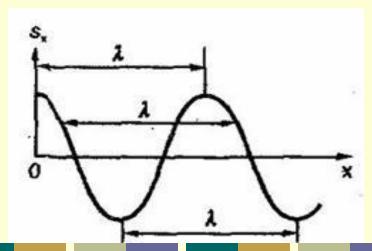
х или А

Механические волны

Волна — колебание распространяющееся в пространстве.

- 1.Механические волны распространяются в твердых, жидких и газообразных средах и не могут распространяться в вакууме.
- 2.Волны <u>переносят энергию</u>, но <u>не переносят</u> <u>массу.</u>

Характеристики волны:


Период – T, частота – v, амплитуда – A, длинна волны - λ , скорость распространения - υ

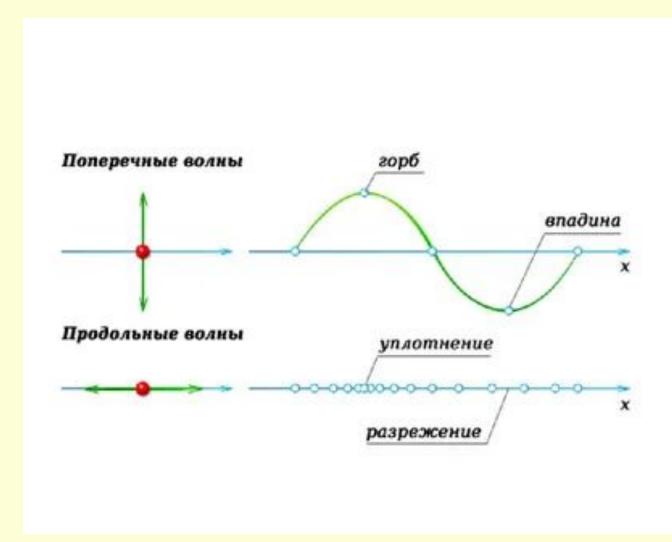
Период – *T* – время совершения одного полного колебания.

Длинна волны – λ – расстояние между ближайшими точками среды, колеблющимися в одинаковых фазах. Единицей измерения является метр.

Длина волны и период связаны соотношением:

$$\lambda = vT$$

Виды волн:

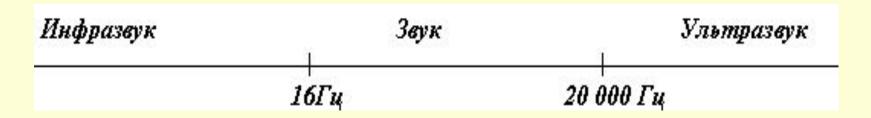

Волна называется <u>поперечной</u>, если частицы среды колеблются в направлениях, <u>перпендикулярных к</u> направлению распространения волны.

Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.

В газах и жидкостях, которые не обладают упругостью формы, распространение поперечных волн невозможно.

В твердых телах возможно распространение как продольных, так и поперечных волн, связанных с наличием упругости формы.

Зарисовать!



Звуковые колебания

Звуковыми волнами принято называть волны, воспринимаемые человеческим ухом.

Диапазон звуковых частот лежит в пределах приблизительно от 16 Гц до 20 кГц.

Распространение звука.

- Звуки могут распространяться в любой среде: жидкой, твердой, газообразной.
- Звуки не могут распространяться в вакууме.
- Скорость распространения звука зависит от свойств среды

Характеристика звука

Громкость зависит от амплитуды колебаний в звуковой волне.

За единицу громкости звука принят *1 Бел* На практике громкость измеряют ϵ децибелах 1 д δ = 0,1 δ .

10 дБ – шепот;

20-30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

80 дБ — шум работающего двигателя грузового автомобиля;

130 дБ – порог болевого ощущения.