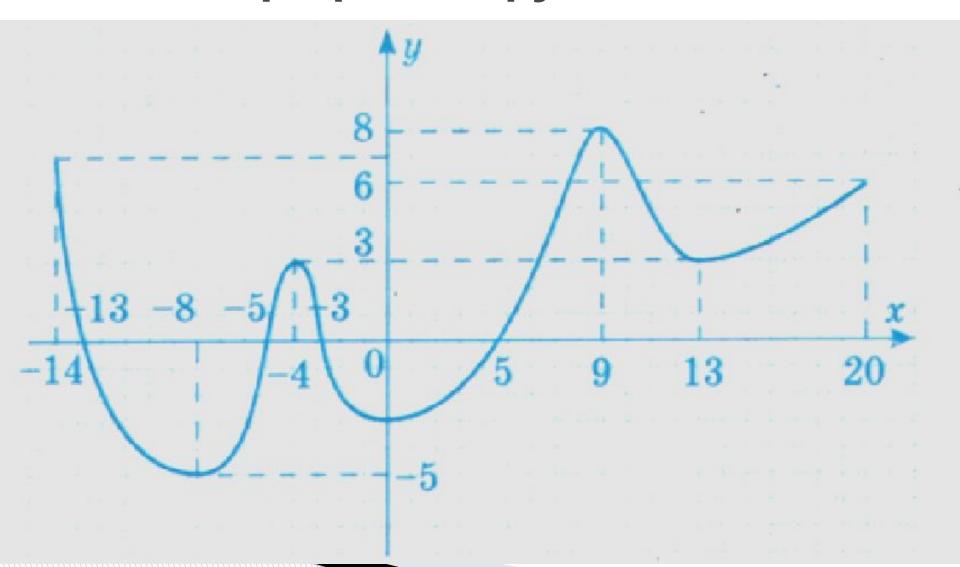
Тема: «Преобразование графиков функции»»

Актуализация опорных знаний – чтение графиков функции



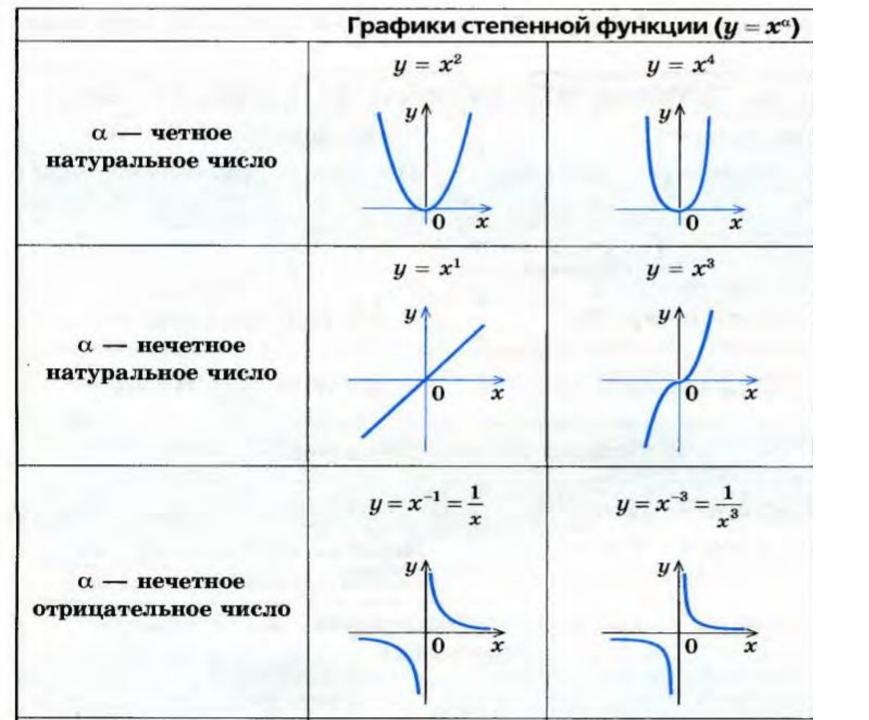
Цели:

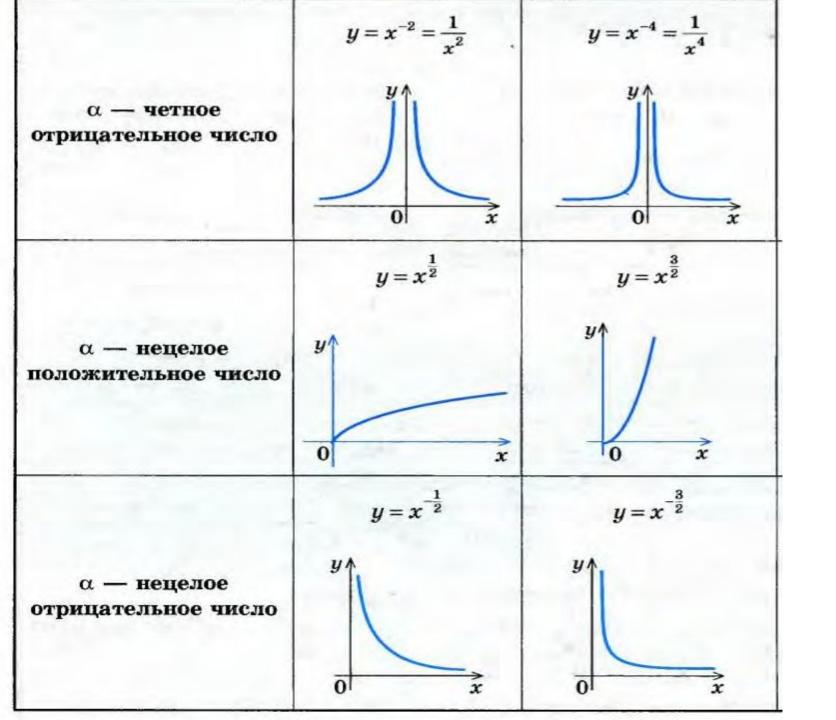
1) Систематизировать приемы построения графиков.

2) Показать их применение при построении графиков сложных функций;

Основные элементарные функции:

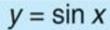
- 1) Степенная функция $y = x^{\alpha}, x \in D_f, \alpha \in R;$
- 2) Показательная функция $y = a^x$, a > 0, ;
- 3) Логарифмическая функция $y = \log_a x, \ a > 0, \ a \neq 1;$
- 4) Тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$, $x \in D_f$
- 5) Обратные тригонометрические функции $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$.





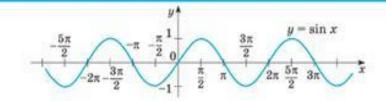
Показательная функция		Логарифмическая функция	
$y = a^x$		$y = \log_a x$	
0 < a < 1	a > 1	0 < a < 1	a > 1
$ \begin{array}{c c} y \\ a^{c}=b \\ y=a^{x} \\ 0 < a < 1 \end{array} $	$b=a^{c}$ 0 $y=a^{x}$ $a>1$ 0 x	$y = log_a \times 0 < a < 1$ 0 1 2 3 4 4 5 4 5 4 5 6 7 8 8 $9 = log_a \times 0 < a < 1$ $9 = log_a \times 0 < a < 1$ 1 2 3 4 4 5 4 4 5 4 5 6 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9	$ \begin{array}{c c} y \\ b \\ y = log_a x \\ a > 1 \end{array} $
$x \in (-\infty; +\infty)$		$x \in (0; +\infty)$	
$y \in (0; +\infty)$		$y \in (-\infty; +\infty)$	

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ



 $D(y) = (-\infty; +\infty)$ E(y) = [-1; 1]Hence $T = 2\pi$

Период $T = 2\pi$. Нечетная функция.

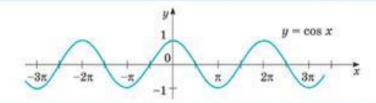


$$y = \cos x$$

 $\begin{array}{l} D(y)=(-\infty;+\infty) \\ E(y)=[-1;1] \end{array}$

Период $T=2\pi$.

Четная функция.



$$y = \operatorname{tg} x$$

 $D(y) = \left(-\frac{\pi}{2} + \pi k; \frac{\pi}{2} + \pi k\right)$

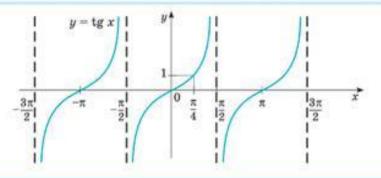
 $E(y) = (-\infty; +\infty)$

Период $T = \pi$.

Нечетная функция.

Возрастает на всей области определения.

Асимптоты $x = \frac{\pi}{2} + \pi k$.

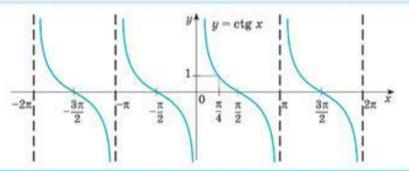


$$y = \operatorname{ctg} x$$

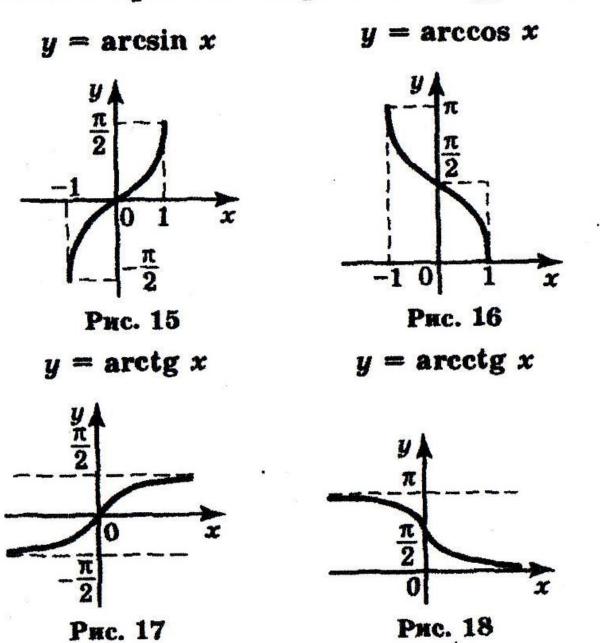
 $D(y) = (\pi k; 2\pi k)$ $E(y) = (-\infty; +\infty)$

Период $T = \pi$.

Убывает на всей области определения. Асимптоты $x = \pi k$.



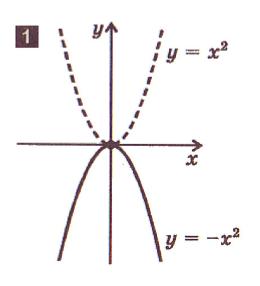
Обратные тригонометрические функции

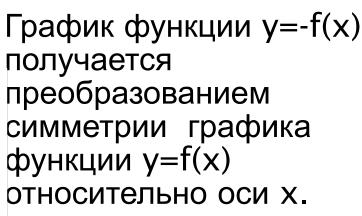


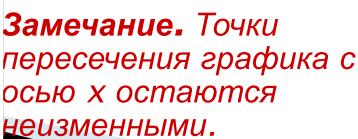
Рассмотрим основные правила преобразования графиков на примерах элементарных функций

1) Преобразование симметрии относительно оси х

 $f(x)\Box - f(x)$







2) Преобразование симметрии относительно оси

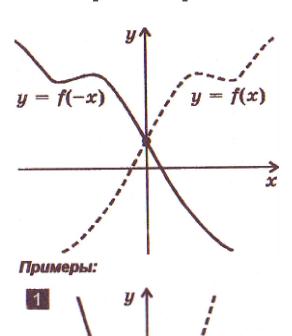
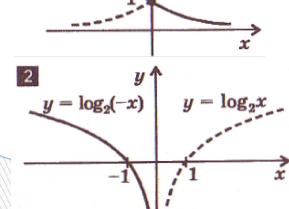


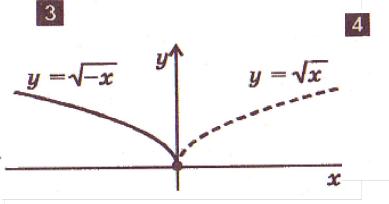
График функции y=f(-x) получается преобразованием симметрии графика функции y=f(x) относительно оси y.

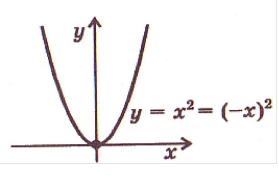
Замечание. Точка пересечения графика с осью у остается неизменной.

Замечание 1. График четной функции не изменяется при отражении относительно оси у, поскольку для четной функции f(-x)=f(x). **Пример:** $(-x)^2=x^2$

Замечание 2. График нечетной функции изменяется одинаково как при отражении относительно оси x, так и при отражении относительно оси y, посольку для нечетной функции f(-x)=-f(x). **Пример:** sin(-x)=-sinx.





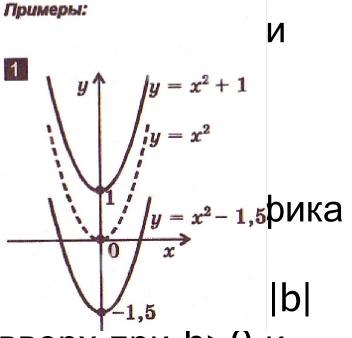


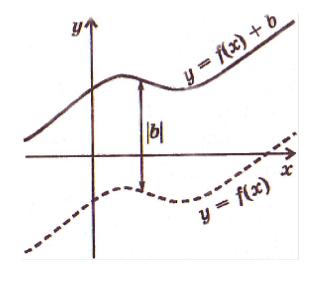
3) Параллельный перенос вдоль оси х f(x)□f(x-a)

Примеры: График функции y=f(x-a) получается параллельным переносом графика функции y=f(x) вдоль оси х на ∣а∣ вправо при а>0 и влево при a<0. 3 \vec{x}

Замечание. Граф. у периодической функции с периодом Т не изменяется при параллельных перстосах вдоль оси х на nT, n∈Z.

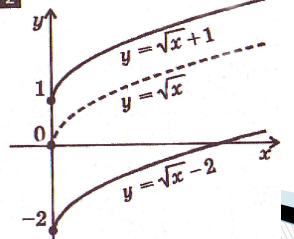
4) Параллельный перенос вдоль оси у f(x)□f(x)+b

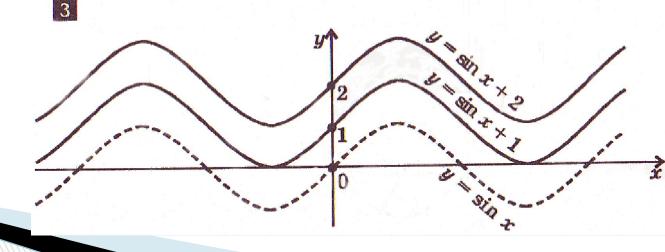




вверх при b>0 и

вниз при h<0.

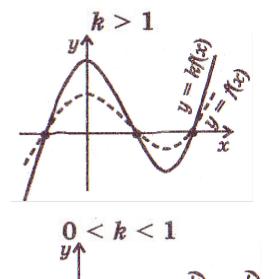




5) Сжатие и растяжение вдоль оси х f(x) □ $f(\alpha x)$, где $\alpha > 0$

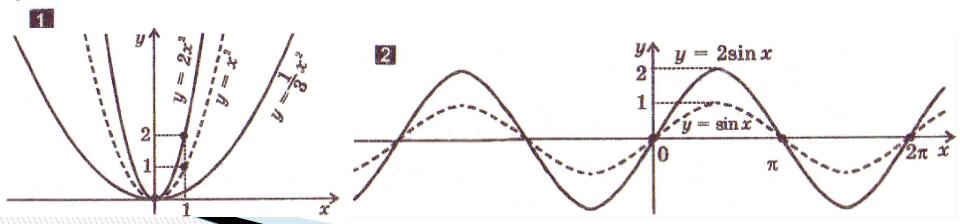
Замечание. Точки с не осечения графика с осью у остаются неизменными.

6) Сжатие и растяжение вдоль оси у



f(x)□**kf(x), где k>0** k>1 График функции y=kf(x) получается растяжением графика функции y=f(x) вдоль оси у в kраз.

0<k<1 График функции y=kf(x) получается сжатием графика функции y=f(x) вдоль оси у в 1/k раз.



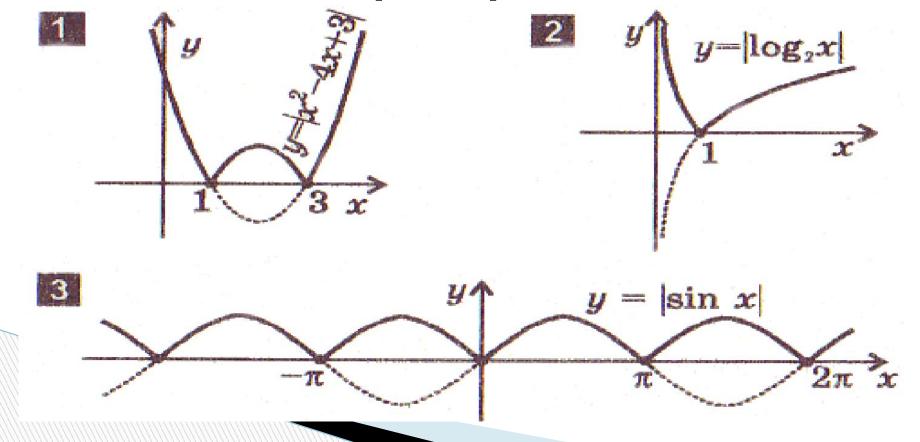
Замечание. Точки перестичния графика с осью х остаются неизменными.

7) Построение графика функции

y=f(x) Части графика функции y=f(x), лежащие выше оси x и на оси x, остаются без изменения, а лежащие ниже оси x – симметрично отображаются относительно этой оси (вверх).

Замечание. Функция y=|f(x)| неотрицательна (ее график расположен в верхней полуплоскости).

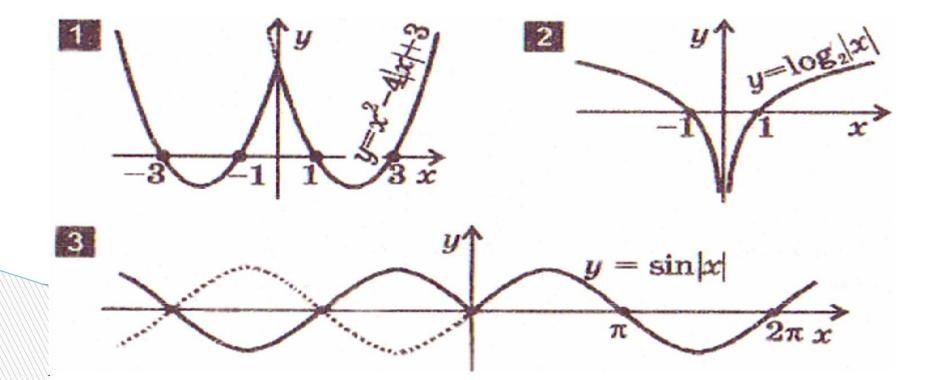
Примеры:



8) Построение графика функции y=f(|x|)

Часть графика функции y=f(x), лежащая левее оси у, удаляется, а часть, лежащая правее оси у – остается без изменения и, кроме того, симметрично отражается относительно оси у (влево). Точка графика лежащая на оси у, остается неизменной.

Замечание. Функция y=f(|x|) четная (ее график симметричен относительно оси у). Примеры:



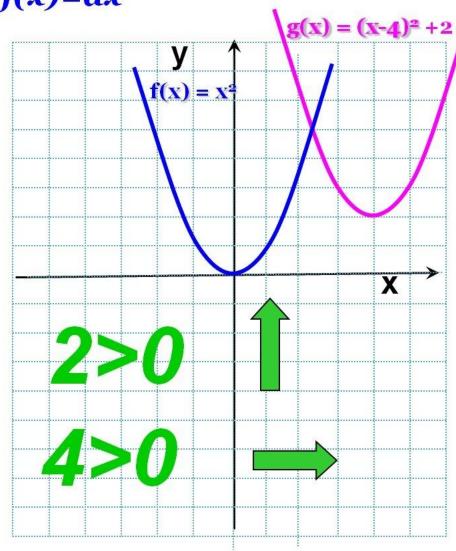
9) Построение графика обратной функции y=g(x), обратной функции y=f(x),

прафик функции у=g(x), обратной функции у=r(x), можно получить преобразованием симметрии графика функции y=f(x) относительно прямой у=x.

Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)

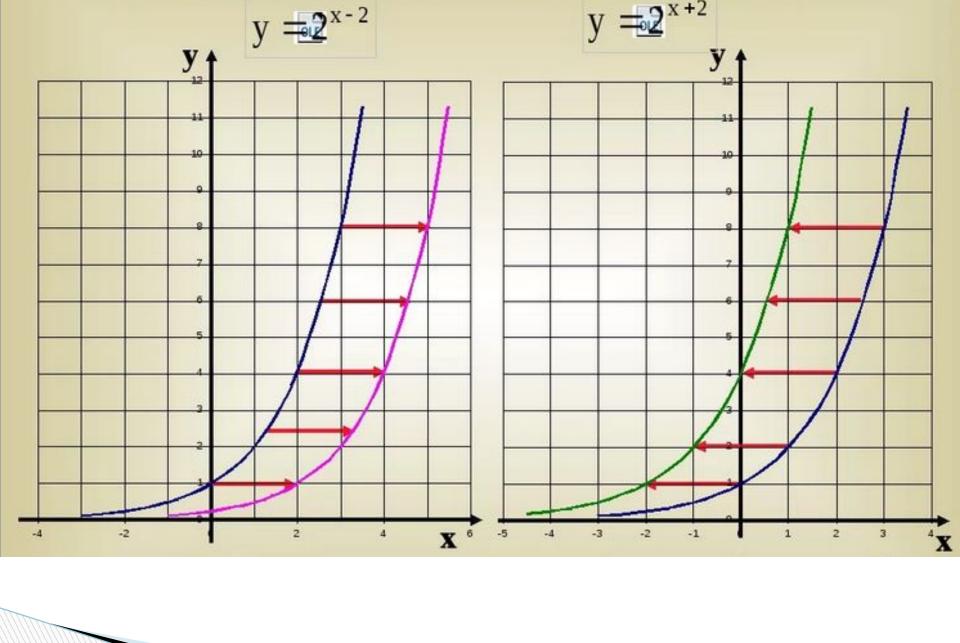
Алгоритм построения графика функции $g(x)=a(x-m)^2+n$ путём преобразования графика функции $f(x)=ax^2$

- **1.**Построить график функции $f(x)=ax^2$.
- 2. Осуществить параллельный перенос графика функции $f(x)=ax^2$ вдоль оси ОХ на |m| единиц масштаба влево, если m<0, и вправо, если m>0.
- 3. Осуществить параллельный перенос графика функции f(x)= ax^2 вдоль оси ОУ на |n| единиц масштаба вверх, если n>0, и вниз, если n<0.

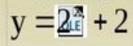


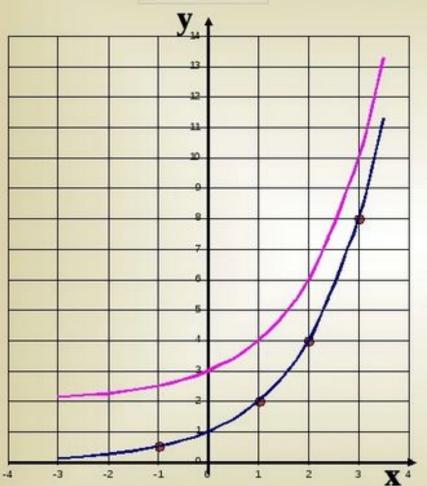


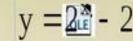


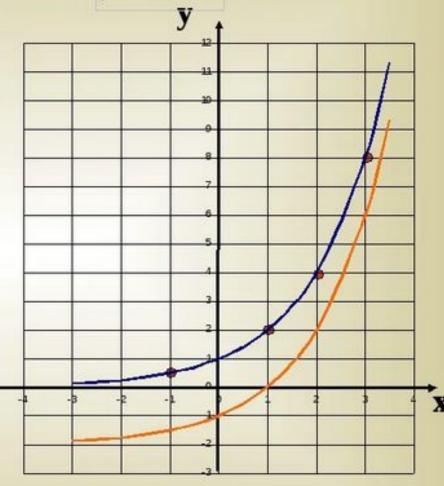


Сдвиг графика функции вдоль оси ОУ.









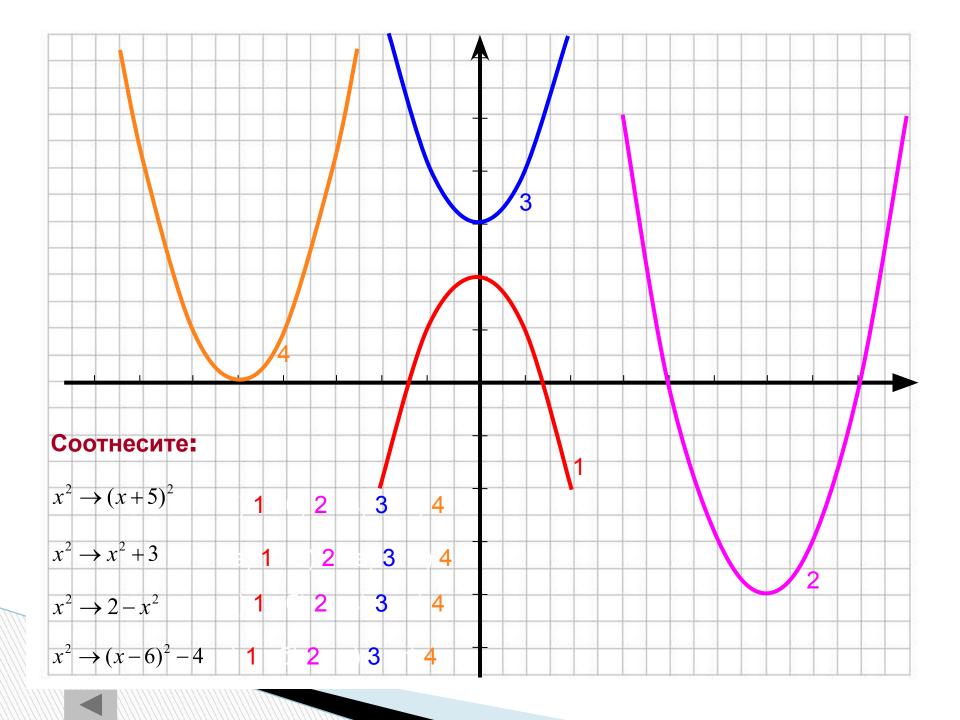
Дан график функции $y = \log_2 x$ Как построить график функции $y = \log_2(x-2)$ Параллельный перенос на 2 вправо

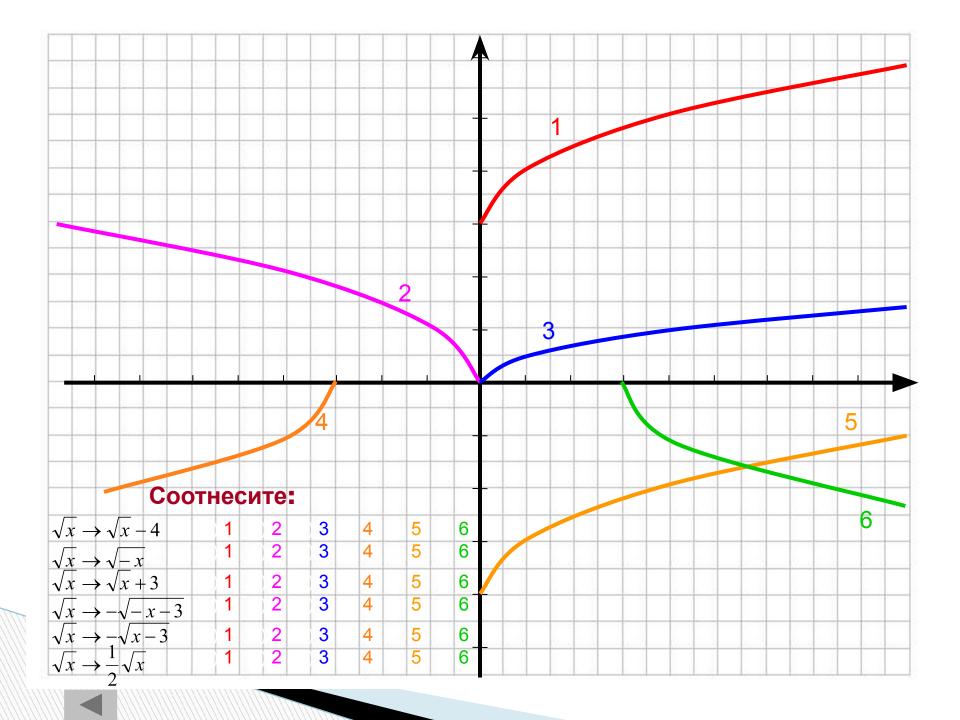
Дан график функции $y = \log_2 x$ график функции $y = 2\log_2 x$

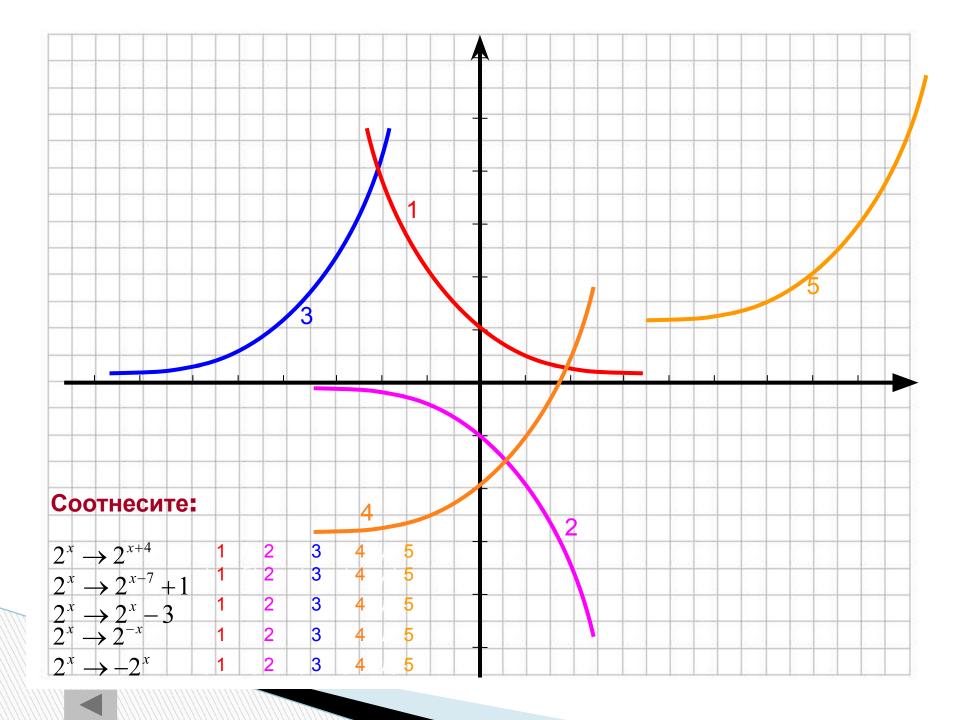
Как построить

$$= 2 \log_2 x$$

Растяжение по оси у в 2 раза

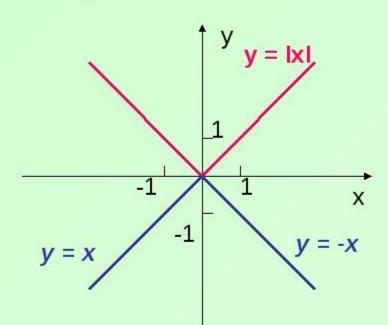


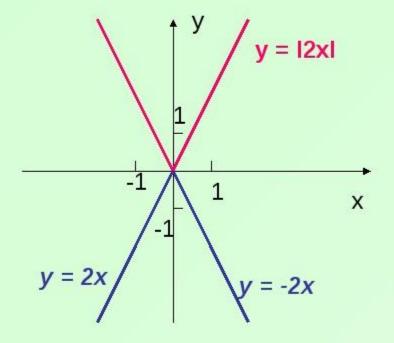




Построение графиков с модулем

Задача Построить графики функций у = IxI и у = I2xI





Построить график функций, сдвигом вдоль: а) оси ординат; б) оси абсцисс

$$y = |x|$$
 $y = |x| + 2$ $y = |x| - 3$ $y = |x|$ $y = |x + 2|$ $y = |x - 3|$
 $y = |x|$
 $y = |x|$
 $y = |x|$
 $y = |x|$
 $y = |x - 3|$
 $y = |x|$
 $y = |x - 3|$
 $y = |x - 3|$

Вывод:

Мы видим, что правила преобразования графиков существенно упрощают построение графиков сложных функций.

Помогают найти нетрадиционное решение сложных задач.

Тема: «Преобразование графиков функции»