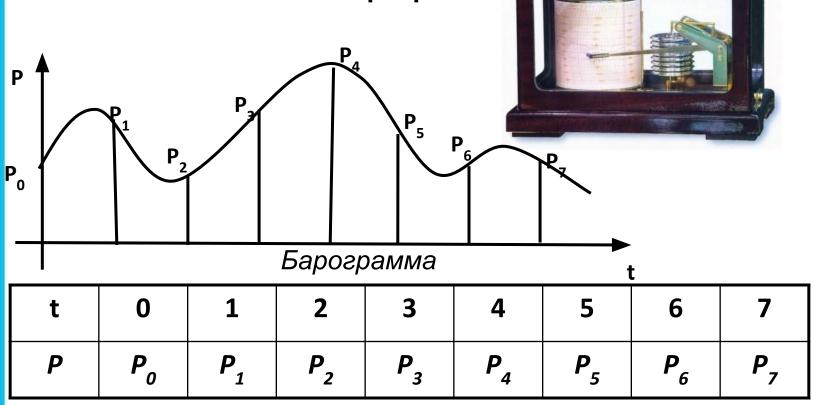


ДВОИЧНОЕ КОДИРОВАНИЕ. ИЗМЕРЕНИЕ ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ

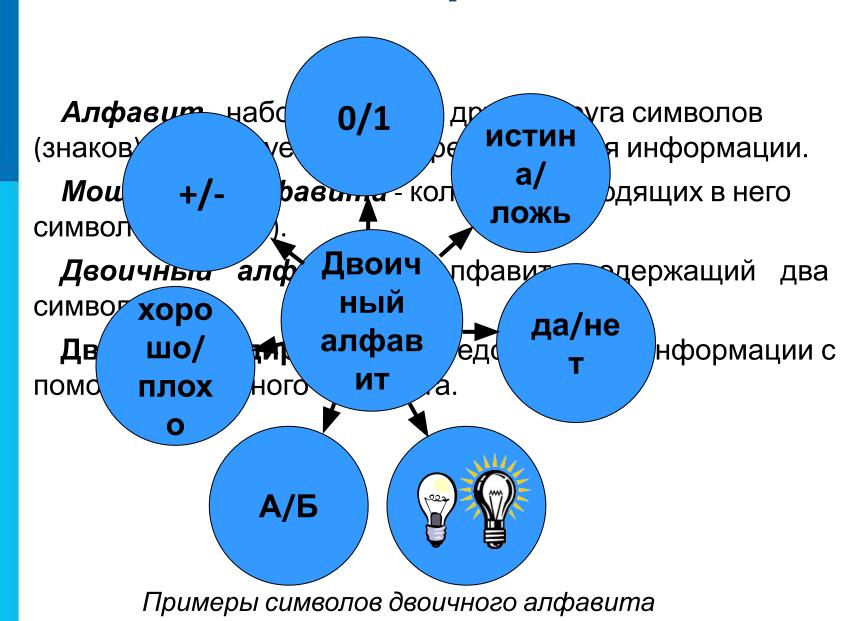
7 класс

Преобразование информации из непрерывной формы в дискретную

Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную.



Информацию, представленную в дискретной форме, значительно проще передавать, хранить и обрабатывать.


Пример

Барограф – прибор для автоматической непрерывной записи изменений атмосферного

Таблица, построенная по барограмме

Двоичное кодирование

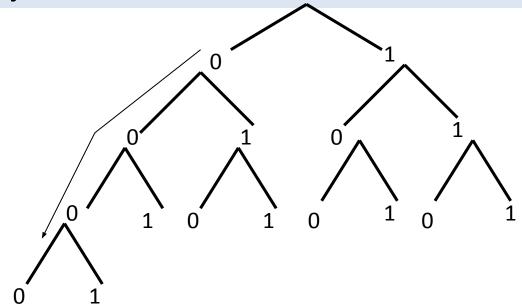

Двоичное кодирование символов

Схема перевода символа произвольного алфавита в двоичный код

Двоичное кодирование символов

Если мощность исходного алфавита больше двух, то для кодировки символа этого алфавита потребуется несколько двоичных символов.

Схематическое представление получения двоичных кодов

Двоичные символы (0, 1) берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды читаются сверху вниз.

Цепочки из двух двоичных символов ⇔ четыре различных символа произвольного алфавита:

Порядковый номер символа	1	2	3	4
Двузначный двоичный код	00	01	10	11

Цепочки из трех двоичных символов ⇔ восемь различных символов произвольного алфавита.

Порядковый номер символа	1	2	3	4	5	6	7	8
Трехзначный двоичный код	000	001	010	011	100	101	110	111

Разрядность двоичного кода – количество символов в двоичном коде (длина двоичной цепочки).

Разрядность двоичного кода	1	2	3	4	5	6	7	8
Количество кодовых комбинаций	2	4	8	16	32	64	128	256

Закономерность: 2=2¹, 4=2², 8=2³, 16=2⁴ и т.д.

В общем виде: $N = 2^i$, где

N – количество кодовых комбинаций,

і – разрядность двоичного кода

Универсальность двоичного кодирования

С помощью двоичного кода может быть представлена любая информация.

Двоичные коды

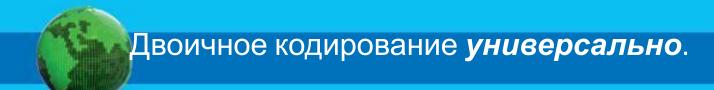
Равномерные

Неравномерные

Одинаковое число символов в кодовых комбинациях Различное число символов в кодовых комбинациях

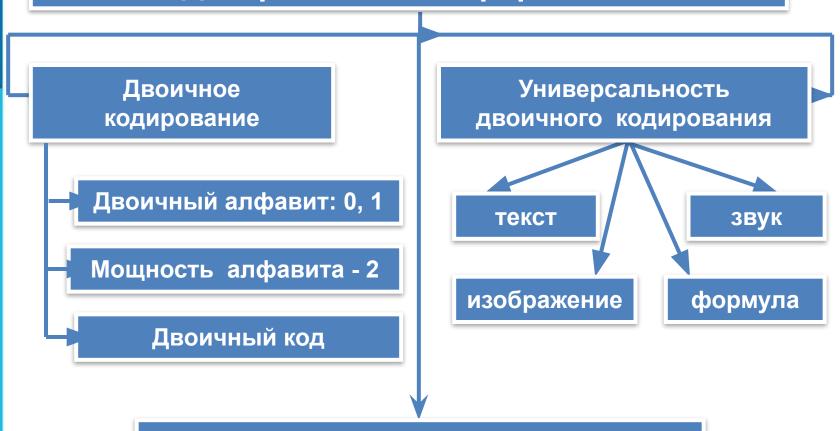
Вопрос: Почему используются и равномерные, и неравномерные коды?

Самое главное <u>Записать в</u> <u>тетрадь</u>


Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную.

Алфавит языка - набор отличных друг от друга символов, используемых для представления информации.

Мощность алфавита - это количество входящих в него символов.


Двоичный алфавит содержит два символа.

Двоичное кодирование - представление информации с помощью двоичного алфавита.

Опорный конспект

Дискретизация информации

Равномерные и неравномерные коды

ИЗМЕРЕНИЕ ИНФОРМАЦИИ

ИНФОРМАЦИЯ И ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ

7 класс

Алфавитный подход к измерению информации

Каждый символ некоторого сообщения имеет определённый *информационный вес* – несёт фиксированное количество информации.

Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита.

Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется **1 бит** (bit)».

Информационный вес символа произвольного алфавита

1

 Алфавит любого языка можно заменить двоичным алфавитом.

2

• Для кодирования N символов произвольного алфавита требуется і-разрядный двоичный код

3

• Информационный вес символа = разрядность двоичного кода.

4

• Мощность алфавита и информационный вес символа алфавита: **N=2**ⁱ

Задача 1

Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение:

Краткая запись условия задачи

$$N=8$$

$$i-?$$

$$N=2^{i}$$

$$3=2^{i}$$

Вычисления

Соотношение, связывающее величины \boldsymbol{i} и N

Ответ: 3 бита.

Информационный объем сообщения

Информационный объём I сообщения равен произведению количества K символов в сообщении на информационный вес i символа алфавита:

Задача 2

Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

Решение:

$$N = 32,$$
 $I = K \times i,$ $K = 140$ $I = N = 2^{i}$

$$32 = 2^{i}$$
, $i = 5$, $I = 140^{\times} 5 = 700$ (битов)

Ответ: 700 битов.

Задача 3

Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

Решение:

$$I = 720;$$
 $N = 2^{i},$ $I = 720/180 = 4$ (бита); $I = K^{\times} i,$ $I = I/K$ $i = 720/180 = 4$ (СИМВОЛОВ)

Ответ: 16 символов.

Единицы измерения информации

КОМПЬЮТЕРНЫЙ АЛФАВИТ

- русские (РУС) буквы
- латинские (LAT) буквы
- цифры (1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
- математические знаки (+, -, *, /, ^, =)
- прочие символы («», №, %, <, >, :, ;, #, &)

Алфавит содержит 256 символов.

$$256 = 2^8 \implies i=8$$

1 байт - информационный вес символа алфавита мощностью 256.

1 байт = 8 битов

Задача 4

Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа этого сообщения? Сколько символов содержит алфавит, с помощью которого записано это сообщение? Решени

$$E_{I} = 4 \text{ Kб},$$
 $K = 4096;$
 $I = 4 \text{ (Kб)} = 4 \times 1024 \times 8/4096 = 8 \text{ (битов)}$

$$N = 2^8 = 256$$
 (символов)

Ответ: информационный вес символа = 8, алфавит содержит 256 символов.

Самое главное

Записать в тетрадь

1 бит - минимальная единица измерения информации.

Информационный вес i символа алфавита и мощность N алфавита связаны между собой соотношением: $N=2^i$.

 $\it Информационный объём I$ сообщения равен произведению количества $\it K$ символов в сообщении на информационный вес $\it i$ символа алфавита:

 $I = K \times i$.

1 байт = 8 битов.

Бит, байт, килобайт, мегабайт, гигабайт, терабайт - единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2¹⁰) раза.

Опорный конспе<u>в</u>тписать в тетрадь

АЛФАВИТ — это вся совокупность символов, используемых в некотором языке для представления информации. **МОЩНОСТЬ АЛФАВИТА** (**N**) — это число символов в алфавите

1 килобайт = 1 Кб = 1024 байта = 2¹⁰ байтов

1 мегабайт = 1 Мб = 1024 Кб = 2¹⁰ Кб = 2²⁰ байтов

1 гигабайт = 1 Гб = 1024 Мб = 2^{10} Мб = 2^{20} Кб = 2^{30} байтов

1 терабайт = 1 Тб = 1024 Гб = 2^{10} Гб = 2^{20} Мб = 2^{30} Кб = 2^{40} байтов