Biology 177: Principles of Modern Microscopy

Lecture: Polarization and DIC

The First Contrast

- Histological stains
- Still important today

The Ultimate Contrast

- Transparent specimen contrast
 - Bright field 2-5%
 - Phase & DIC 15-20%
 - Stained specimen 25%
 - Dark field 60%
 - Fluorescence 75%

Polarized light

- Circular polarization, rarely produced in nature
- Can see on iridescent scarab beetles and Mantis shrimps
- Mantis shrimps can see circularly polarized light

Polarized light

- Radial light waves becomes polarized when reflected off surface at Brewster's angle
- Brewster's angle ranges from 50° to 70° depending on surface material.
- Used to polarize lasers
- Why sunglasses horizontally polarized

Polarized light

- We cannot detect the polarization of light very well
- But some animals can see polarized light
- Many insects, octopi and mantis shrimps

Polarized light microscopy

- Highly specific detection of birefringent components
- Orientation-specific
- Less radiation than through other techniques such as fluorescence
- Linear / circular Polarized Light
- Differential Interference Contrast (DIC) uses polarized light

Polarized light microscopy

- With crossed polarizers:
 - Only items that rotate the plane of polarization reach the detector
- Retardation plate optional
 - Converts contrast to color

Polarized light microscopy images

Brightfield

Polarized Light

Pol + Red I

- Material having a refractive index (η) dependent on polarization
- Responsible for **DOUBLE REFRACTION**, splitting of a ray of light into two with differing polarization

- Augustin-Jean Fresnel first described in terms of polarized light
- Isotropic solids are not birefringent (glass)
- Anisotropic solids are birefringent (calcite, plastic dishes)
- Splits light into two rays with perpendicular polarization

- Light split into extraordinary and ordinary rays
- Birefringence difference between refractive index of extraordinary ray (η_e) and ordinary ray (η_o)

- Structural
 - Anisotropic
- Stress or strain
 - Isotropic

6 mm

Full Wave (First Order) Retardation Plate

- Also known as:
 - Lambda plate
 - Red plate
 - Red-I plate
 - Gypsum plate
 - Selenite plate
- Retard one wavelength in the green (550 nm) between extraordinary ray and ordinary ray

Uric Acid

Polarized light microscopy Using full wave retardation plate

- Phyllite
 - Metamorphic rock aligned under hear and stress

Phyllite Thin Section in Polarized Light

- Oolite
 - Sedimentary rock of cemented sand grains

Oolite Thin Section in Polarized Light

Plane-Polarized Cross-Polarized Full wave retardation plate

Reflected polarized light microscopy

- Requires special objective
- Not corrected for viewing through cover glass
- Strain free

Reflected Polarized Light Microscopy

Integrated circuit

Ceramic crystal

Copper imperfections