

«Спирты»

Выполнил: Закиров

Ильфат

Группа: 32-12

ОПРЕДЕЛЕНИЕ

Ú Спиртами- называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп- ОН), соединённых с углеводородным радикалом.

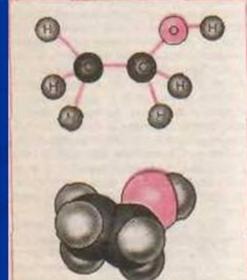
Физические свойства спиртов.

Между молекулами спиртов возникают водородные связи это приводит к тому, что спирты имеют аномально высокие для своей молекулярной массы температуры кипения. По этой же причине, первые представители спиртов являются жидкостями, а не газами. Высшие спирты(начиная с C₁₂H₂₅OH) при комнатной температуре- твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, и октанол уже не смешивается водой.

1. Классификация спиртов.

1) Дайте определение понятию спирты.

Спиртами называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп, соединенных с углеводородным радикалом


- 2) Вспомните типы классификации спиртов.
- 1) По числу гидроксильных групп:

Одноатомные, двухатомные (гликоли), трехатомные и многоатомные спирты

2) По характеру углеводородного радикала:

Предельные, непредельные, ароматические

3) По характеру атома углерода, с которым связана гидроксильная группа: Первичные, вторичные, третичные

Сравнение физических свойств одноатомных и многоатомных спиртов

Спирты	$\mathbf{M_r}$	T _{кип} , ⁰ C	Плотность, г/ см ³		
Этанол	46	78	0,79		
Пропанол-1	60	97	0,80		
Глицерин	92	290	1,26		

Классификация многоатомных спиртов

Многоатомные спирты

Двухатомные (диолы) Этандиол-1,2 (этиленгликоль)

Трехатомные (триолы) (глицерин) Многоатомные (полиолы) гексаол

Применение многоатомных спиртов

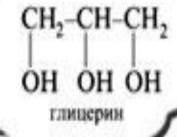
Области применения		Свойство спирта, на котором					
многоатомных спиртов			основано применение				
1.	Антифризы для двигателей	1.	Низкая температура замерзания				
	внутреннего сгорания.		этиленгликоля.				
2.	Добавление в косметические	2.	Глицерин - смягчающее				
	средства.		средство.				
3.	Использование в качестве	3.	Глицерин – смазка между				
	пластификатора.		полимерными молекулами.				
4.	Применение в кожевенном	4.	Гигроскопичность глицерина				
	производстве.		предохраняет от высыхания.				
5.	В фармацевтической	5.	Глицерин –				
	промышленности.		сосудорасширяющее средство				
			при сердечно-сосудистых				
			заболеваниях.				

первичный спирт СН₃—СН₂—СН₂—ОН пропанол-1

вторичный спирт СН₃—СН(ОН)—СН₃ пропанол-2

третичный спирт CH₃—C(CH₃)(OH)—CH₃ 2-метилпропанол-2

Применение спиртов


Антифриз – низкозамерзающая жидкость

Умягчитель кожи и ткани

Сердечное средство

Нитроглицерин

Способы получения спиртов.

- ⑤ Гидролиз галогеналканов.
 C₂H₅CI + NaOH C₂H₅OH + NaCI
- Б Гидратация алкенов.

- Б Гидрирование альдегидов и кетонов. СН₃-СОН + Н₂ ■ * С₂Н₅ОН
- \bigcirc Окисление алкенов. $CH_2 = CH_2 + [O] + H_2O = \bullet HO-CH_2-CH_2-OH$
- © Специфические способы получения спиртов.
- Метанол получают в промышленности при взаимодействии водорода с оксидом углерода(II) при повышенном давлении и высокой температуре в присутствии катализатора.

Брожение глюкозы.

$$C_6H_{12}O_6 - 2C_2H_5OH + 2CO_2$$

Отдельные представители спиртов и их значение.

- Метанол (метиловый спирт СН₃ОН) бесцветная жидкость с характерным запахом, горит голубоватым пламенем. Историческое название метанола- древесный спирт- объясняется одним из способов его получения- перегонкой твердых пород дерева. Метанол очень ядовит! Попадание в организм более 50 мл метанола вызывает смерть. Под действием фермента алкогольдегидрогеназы он превращается в организме в формальдегид и муравьиную кислоту, которые повреждают сетчатку глаза, вызывая гибель зрительного нерва и полную слепоту.
- Этанол (этиловый спиртС₂Н₅ОН)- бесцветная жидкость с характерным запахом, хорошо растворяется в воде. Небольшие количества этанола при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможения в коре головного мозга, вызывая состояние опьянения. В больших количествах этанол угнетает деятельность головного мозга, вызывая нарушение координации движений. При систематическом употреблении этанола приводит к стойкому снижению продуктивности работы головного мозга гибели клеток печени и замене их соединительной тканью- циррозу печени.

Молекулярная формула

CH₃OH

H-C-H OH

Структурная формула

Модель молекулы метанола

Метанол очень ядовит! Даже малая его доза может быть смертельной для организма или привести к полной потере зрения.

Получение спиртов

<u>Метанол</u>

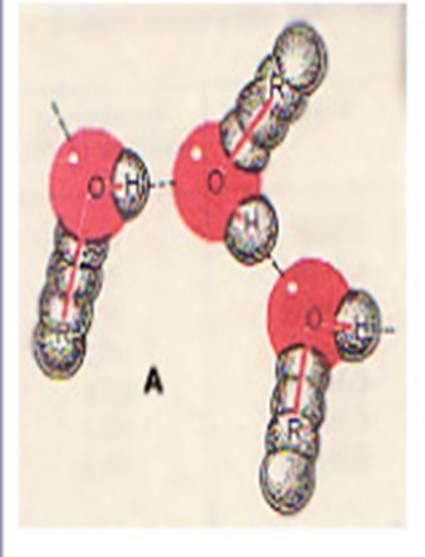
Из синтез - газа

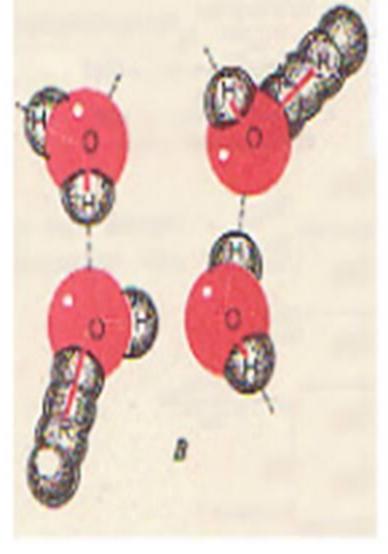
$$CO + 2H_2 = CH_3OH$$

гидратация

этилена

$$C_2H_4 + H_2O = C_2H_5OH$$

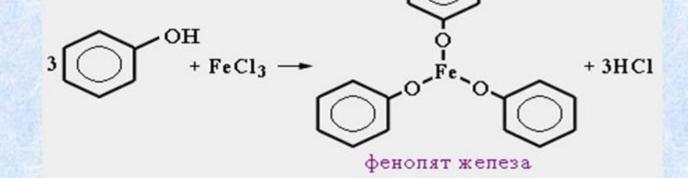

Из галогеналканов


$$RBr + KOH = ROH + KBr$$

Из глюкозы

$$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$$

Из древесины, крахмала


Образование водородных связей между молекулами спирта

Образование водородных связей между молекулами воды и спирта


Качественная реакция на многоатомные спирты — взаимодействие со свежеприготовленным гидроксидом меди (II) с образованием ярко-синего гликолята меди.

$$2 \stackrel{\text{CH}_2\text{OH}}{\text{CH}_2\text{OH}} + \text{Cu(OH)}_2 \qquad \frac{\text{NaOH}}{\text{-2H}_2\text{O}} \qquad \stackrel{\text{CH}_2\text{O}}{\text{CH}_2} \stackrel{\text{Cu}}{\text{OCH}_2} \qquad \stackrel{\text{OCH}_2}{\text{CH}_2\text{O}} \qquad \stackrel{\text{H}}{\text{-}1} \qquad \qquad \stackrel{\text{CH}_2\text{O}}{\text{OCH}_2} \qquad \stackrel{\text{CH}_2\text{O}}{\text{-}1} \qquad \stackrel{$$


Качественная реакция на фенолы—взаимодействие с раствором хлорида железа (III) с образованием фиолетового фенолята железа.

СПАСИБО ЗА ВНИМАНИЕ!!!

	a 1 s	. 2 s	436	.40	.54	26 t	.74	. B a			
1	Si .						H 1 1 0074 Doespes	He 2 4 5005 Penni			
2	Li 3 6345 Arms	0.012		12.011		O 8 11,000 Taxanepon	F 9 18,906 *ray	Ne 10 Milto Bess			
	Na 11 27 000 Starped	24,905	Al 13 38 181 Accessori	22.035		32.06	Cl 17	Ar 18 20-9-9 Aprox			
4	K 19 10:000 Name	Ca 20 max Samest	21 Se 44 955 Caricali	22 Ti +7 00 Tema					26 Fe	28.003	27 N St. 7 Steam
	29 Ca 50 545 546a	45.38		72.59	As 33 14 801 Names	78,95	Br 35 76 964 Spots	Kr 36 1; 50 Nonven			
5	Rb 37 ss 468 Dytemin	Sr 38 st.40 Copounds	39 Y se ess Hrepsi	9(.0)	41 Nb acan mone	95,94	43 To 80 300 Tecanosis		dd Ru 101.0 Dynaed	100.000	46 Po
0.00	47 Ag yer sec Capabyo	312.40	214.12	115.89			I 53	Xe 54			
6		Ba 56 13734 Sepon	57 La 128.965 //decise	72 Hf	73 Ta		189 307		76 Os 180 Utasi	182.32	78 Po 185.00 (Decree
	79 Au 185 Bell Newson	330.59		307.2		(209)	At 85	Rn 86			
7	[225]	Ra 88 mesons Panel	89 Ac 1227 Sections	194 Ku (20) Sypercusi	105 No						