
Из предложенного списка выпишите формулы оксидов и оснований

 $CaCl_{2}$; BaO; $Fe(OH)_{2}$; $H_{2}SO_{4}$; HNO_{3} ; CaO; CO_{2} ; $Ca(OH)_{2}$; $ZnSO_{4}$; $H_{2}SiO_{3}$; NaOH; KNO_{3} .

Оксиды *BaO; CaO; CO₂*,

Основания $Fe(OH)_2$ Ca(OH) $_{2,}$ NaOH

«Они имеют кислый вкус. В них изменяет цвет лакмус с фиолетового на красный».

Кислоты - сложные вещества, состоящие из одного или нескольких атомов водорода и кислотных остатков.

КИСЛОРОДСОДЕРЖАЩИЕ

БЕСКИСЛОРОДНЫЕ

Физические свойства кислот

Многие кислоты, например серная, азотная, соляная – это бесцветные жидкости. Известны также твёрдые кислоты: ортофосфорная, метафосфорная НРО₃, борная Н₃ВО₃. Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H₂SiO₃. Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый вкус содержащиеся в них кислоты. Отсюда названия кислот: лимонная, яблочная и т.д.

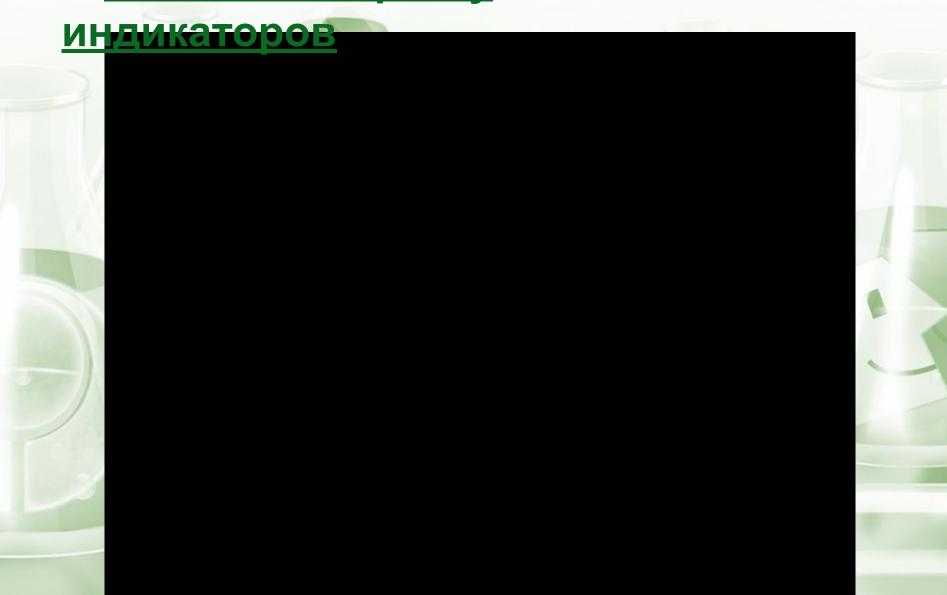
Способы получения кислот

бескислородные	кислородсодержащие	
HCl, HBr, HI, HF, H,S	HNO ₃ , H ₂ SO ₄ и другие	
получение		
1. Прямое	1. Кислотный оксид +	
взаимодействие	водa = кислота	
неметаллов	$SO_3 + H_2O = H_2SO_4$	
$H_2 + Cl_2 = 2 HCl$		
2. Реакция обмена между солью и менее		
летучей кислотой		

2 NaCl (тв.) + H_2SO_4 (конц.) = $Na_2SO_4 + 2HCl\uparrow$

ИНДИКАТОРЫ (от лат. indicator – указатель) – вещества, позволяющие следить за составом среды или за протеканием химической реакции

Взаимодействие с индикаторами


Индикатор	Нейтральная среда	Кислая среда
Лакмус	Фиолетовый	Красный
Фенолфталеи н	Бесцветный	Бесцветный
Метиловый оранжевый	Оранжевый	Розовый

Помни! Нерастворимые кислоты не меняют окраску индикаторов.

Обратно ко всем свойствам

Химические свойства

КИСЛОТЕНЯЮТ ОКРАСКУ

2. Реагируют с металлами в ряду активности до H₂

3. OK Me

4. Реагируют с

основаниями КИСЛОТА + ОСНОВАНИЕ= СОЛЬ+ Н,О

$$H_3PO_4 + 3NaOH = Na_3PO_4 + 3H_2O$$

5. Реагируют с солями слабых, летучих кислот - если образуется соль, выпадающая в осадок или выделяется газ:

2 NaCl (тв.) + H_2SO_4 (конц.) = $Na_2SO_4 + 2HCl\uparrow$ (р. обмена)

Сила кислот уб $HI > HClO_4 > HBr$ $H_2SO_3 > H_3PO_4 >$ *Каждая предывытеснить из*

6. Разложение кислородсодержащих кислот при нагревании

(ИСКЛ. H₂SO₄; H₃PO₄)

КИСЛОТА = КИСЛОТНЫЙ ОКСИД + ВОДА

(р. разложения)
Запомните! Неустойчивые кислоты
(угольная и сернистая) – разлагаются
на газ и воду:

$$H_2CO_3 \leftrightarrow H_2O + CO_2\uparrow$$

 $H_2SO_3 \leftrightarrow H_2O + SO_2\uparrow$

ХИМИЧЕСКИЕ СВОЙСТВА СОЛЯНОЙ КИСЛОТИ

Составьте уравнения реакций, назовите продукты:

 $Na_2O + H_2CO_3$ ZnO + HCI $CaO + HNO_3$ $Fe_2O_3 + H_2SO_4$