АЛГЕБРА

для потока «Прикладная математика и информатика»

Четвёртый модуль 2020 – 2021 уч. года

ЛЕКЦИЯ

2

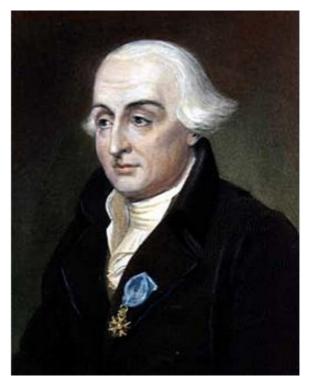
Г.М. Полотовский

(polotovsky@gmail.com)

14 апреля 2021

Γ.

Из истории появления понятия «группа»



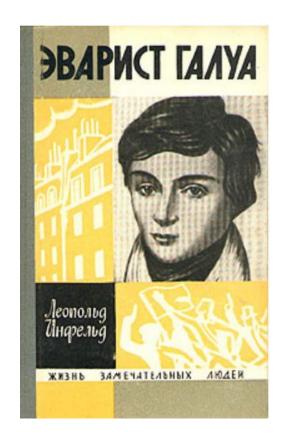
Жозеф Луи Лагранж1736 – 1813

1771 г. – изучал группы *S*_n

Эварист Галуа в 15-летнем возрасте. Карандашный портрет с натуры.

1811 - 1832

≈ 1831 – термин «группа»



https://www.rulit.me/author/dalma-a/evarist-galua-revolyucioner-i-matematik-get-475922.html

http://pyrkov-professor.ru/default.aspx?tabid=190&ArticleId=764

Группа				
0	HOCI	каД	В	ВД
O	0	Д	В	Вд
Д	Д	0	Вд	В
В	В	Вд	0	Д
Вд	Вд	В	Д	O

Группа					
EMMN *	етрі 0	ИЙ R _X	Ry	Ro	
0	0	R_{X}	R_{Y}	Ro	
R_{X}	R_{X}	0	Ro	R_{Y}	
R_{Y}	R_{Y}	Ro	0	R_{X}	
Ro	Ro	R_{Y}	R_{X}	O	

Группа

☆ C	ОЛДа	П	Л	K
C	C	П	Л	K
П	П	K	C	Л
Л	Л	C	K	П
K	K	Л	П	C

Четверная группа Клейна (1884)

115

Здесь "+" – сложение по модулю 4.

				3
+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

 +
 0
 3
 1
 2

 0
 0
 3
 1
 2

 3
 3
 2
 0
 1

 1
 1
 0
 2
 3

 2
 2
 1
 3
 0

 Z_4

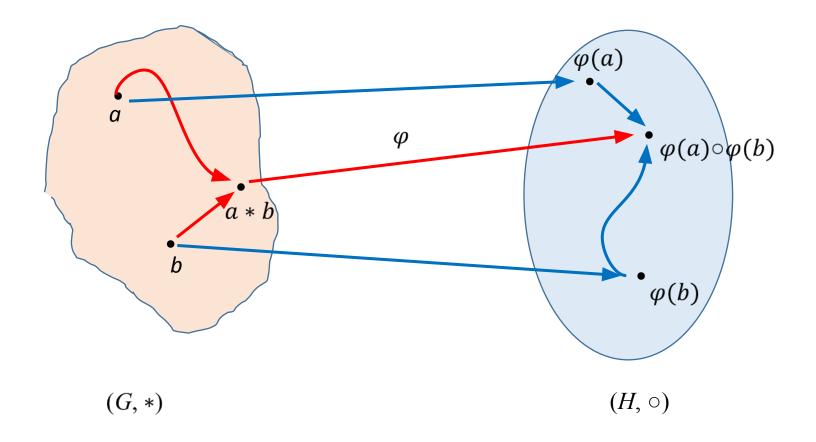
 Z_4

 Z_4

Определение 4. (*Изоморфизм групп*). Группы (G, *) и (H, \circ) называются *изоморфными*, если

- 1) существует взаимно однозначное отображение $\varphi: G \longrightarrow H$;
- 2) отображение φ сохраняет операцию, т. е. $\varphi(a*b) = \varphi(a) \circ \varphi(b) \ \forall a,b \in G.$

При этом само отображение φ называется изоморфизмом групп (G, *) и (H, \circ) .



Теорема 2.1. Пусть $(G, *) \cong (H, \circ)$ и $\varphi : G \longrightarrow H$ изоморфизм. Тогда

1) $\varphi(e_G) = e_H$;

2)
$$\varphi(a^{-1}) = (\varphi(a))^{-1} \quad \forall a \in G.$$

Доказательство.

1)
$$\varphi(a) = \varphi(a * e_G) = \varphi(a) \circ \varphi(e_G) \ \forall a \in G \implies \varphi(e_G) = e_H$$

2) $\varphi(e_G) = \varphi(a * a^{-1}) = \varphi(a) \circ \varphi(a^{-1})$
 $\varphi(e_G) = e_H$
 $\Rightarrow \varphi(a) \circ \varphi(a^{-1}) = e_H.$

Замечание о классификации конечных

SULTE

элулл					
порядок	число групп ^[4]	коммутативных	некоммутативных		
0	0	0	0		
1	1	1	0		
2	1	1	0		
3	1	1	0		
4	2	2	0		
5	1	1	0		
6	2	1	1		
7	1	1	0		
8	5	3	2		
9	2	2	0		
10	2	1	1		
11	1	1	0		
12	5	2	3		
13	1	1	0		
14	2	1	1		
15	1	1	0		

16	14	5	9
17	1	1	0
18	5	2	3
19	1	1	0
20	5	2	3
21	2	1	1
22	2	1	1
23	1	1	0
24	15	3	12
25	2	2	0
26	2	1	1
27	5	3	2
28	4	2	2
29	1	1	0
30	4	1	3

Замечание о классификации конечных

Теорема классификации утверждает, что список конечных *простых* групп состоит из 18 счётных бесконечных семейств, плюс 26 исключительных = спорадических групп.

Большой монстр = группа Фишера – Гриса (41984)

$$2^{\text{QPSQK}} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 =$$

 $= 808\,017\,424\,794\,512\,875\,886\,459\,904\,961\,710\,757\,005\,754\,368\,000\,000\,000.$

Бэби-монстр (начало 1970-х) имеет

 $2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$

= 4154781481226426191177580544000000

Определение 5. Пусть (G, *) – группа и $H \subset G$. H называется *подгруппой группы* G, если H является группой относительно той же операции *. **Замечание:** пусть G группа, e – её нейтральный элемент. Тогда $\{e\}$ и G являются подгруппами группы G.

Из определения 5 непосредственно следует, что $e_G \in H$ и e_G является нейтральным элементом в H (поскольку нейтральный в группе единственный) и что H замкнуто относительно операции * и взятия обратного элемента.

Однако проверку перечисленных условий можно заменить проверкой одного условия:

Теорема 2.2 (критерий подгруппы).

H подругруппа группы $G \iff \forall a, b \in H \ ab^{-1} \in H$.

Замечание: в аддитивной записи последнее условие имеет вид $a-b \in H$. Доказательство.

- \rightarrow Очевидно, поскольку по условию H группа.
- \leftarrow Положим b=a. Тогда $ab^{-1}=aa^{-1}=e_G\in H$.

Пусть $d \in H$. Положим в условии a = e, b = d, тогда $ab^{-1} = ed^{-1} = d^{-1} \in H$.

Пусть $c, d \in H$. Тогда $d^{-1} \in H$. Положим в условии $a = c, b = d^{-1}$, тогда $ab^{-1} = c(d^{-1})^{-1} = cd \in H$.

(Докажите самостоятельно, что $(d^{-1})^{-1} = d$.)

Примеры.

- 1) Множество всех четных чисел является подгруппой в $(\mathbb{Z}, +)$.
- 2) Множество $SL_n(\mathbb{R})$ является подгруппой в $GL_n(\mathbb{R})$.
- 3) Множество A_n четных подстановок является подгруппой в S_n .

Из критерия подгруппы легко следует утверждение, которое Вам предлагается **для самостоятельного доказательства**:

Если $\{H_i\}_{i\in I}$ некоторое семейство подгрупп группы G , то $H=\bigcap_{i\in I} H_i$ также

является подгруппой в ${\it G}$, т.е. пересечение любого количества подгрупп будет подгруппой.

Определение 6. Пусть $g \in G$, $n \in Z$. Введем понятие n -ой степени элемента G:

Если
$$n > 0$$
, то $g^n = \underbrace{gg \cdots g}_{n \ pas}$. Если $n = 0$, то $g^n = e$. Если $n < 0$, то $g^n = \underbrace{g^{-1}g^{-1} \cdots g^{-1}}_{-n \ pas}$.

Замечание: в аддитивной записи определение 6 превращается в определение кратного:

Если
$$n > 0$$
, то $ng = \underbrace{g + g + \dots + g}_{n \ pas}$. Если $n = 0$, то $ng = 0$. Если $n < 0$, то $ng = \underbrace{(-g) + (-g) + \dots + (-g)}_{-n \ pas}$.

Теорема 2.3. Пусть G – группа. Тогда \forall $m, n \in Z$, $g \in G$ имеет место $g^m g^n = g^{m+n}$; $(g^m)^n = g^{mn}$, в частности, $(g^m)^{-1} = (g^{-1})^m = g^{-m}$.

Доказательство легко вытекает из определения степени и из обобщённой ассоциативности.

Теорема 2.4. Если G – **коммутативная** группа, то $(ab)^n = a^n b^n$.

Теорема 2.5. Пусть G – группа, $g \in G$. Множество $\langle g \rangle = \{g^n | n \in Z\}$ всех степеней элемента g является подгруппой в G.

Это утверждение непосредственно следует из определения 6 и теоремы 2.3.

Определение 7. Подгруппа < g > называется циклической подгруппой, порождённой элементом g, а элемент g — порождающим элементом подгруппы < g >.

Замечания: в аддитивной записи $< g > = \{ng \mid n \in Z\};$ образующий элемент циклической подгруппы, вообще говоря, может быть выбран не единственным способом.

Примеры.

1. $G = C \setminus \{0\}$ относительно операции умножения комплексных чисел.

$$i^0=1, i^1=i, i^2=-1, i^3=-i, i^4=1; < i>=\{1,i,-1,-i\}$$
 – подгруппа порядка 4.

2.
$$GL_2(R) = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \middle| a_{ij} \in R, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0 \right\}.$$

Пусть
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, тогда $\langle A \rangle = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$, поскольку

$$A^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E.$$

Таким образом, циклическая группа, порождённая матрицей A, имеет порядок 2.

Если
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, то $A^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$; $A^3 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$;....; $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

Таким образом, теперь подгруппа, порождённая матрицей A, имеет бесконечный порядок.

Пусть G — произвольная группа, $g \in G$. Рассмотрим циклическую подгруппу, порожденную элементом g . Возможны следующие два случая :

- 1). Все степени элемента g различны между собой. Тогда группа < g > бесконечна и не существует такого целого ненулевого числа n, что $g^n = e$.
- 2) Существуют различные s < t, такие что $g^s = g^t$. Умножим это равенство на g^{-s} , получим $g^{t-s} = e$. Следовательно, существует такое целое положительное число n, что $g^n = e$. Среди таких чисел n можно выбрать наименьшее.

Определени Торядком элемента g называется наименьшее целое положительное число n, такое что $g^n = e$. Обозначение: ord g = n. Если такого числа не существует, то говорят, что g имеет бесконечный порядок.

Примеры.

1) $G = \mathbb{Z}$, ord 0 = 1, порядки остальных элементов G бесконечны, так как если кратное nm = 0 при $n \neq 0$, то m = 0.