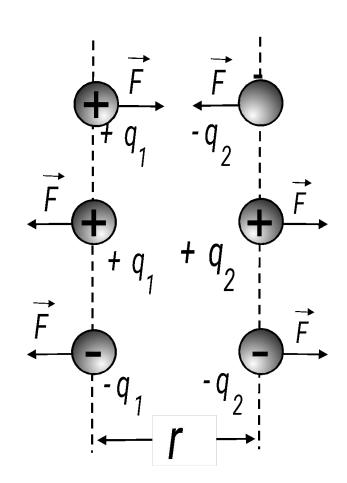
Закон Кулона

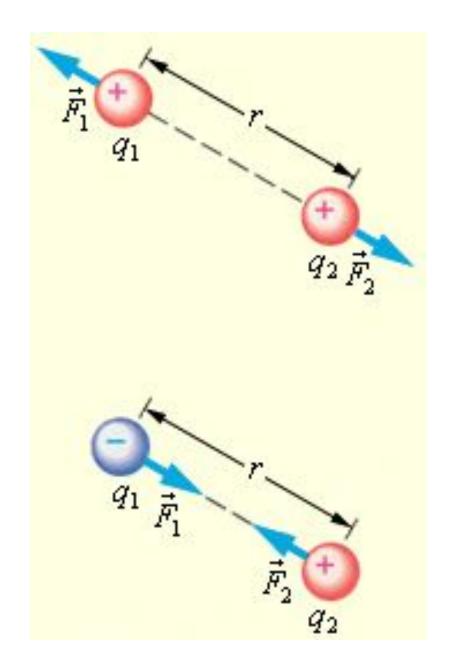
Понятие напряженности электростатического поля

Напряженность электростатического поля точечного заряда


Определение

Электрическим полем называют особую форму материи в виде электрических сил, т. е. сил, действующих на электрические заряды и вызываемых электрическими зарядами, причем величина этих сил не зависит от скорости движения зарядов.

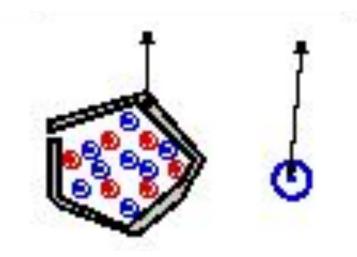
В рассматриваемой части электрического поля может и не быть электрических зарядов, но его наличие может быть определено при помощи «пробного» электрического заряда.



В 1786 г. Шарль Огюстен Кулон (1736-1806г., франц.) установил ЧТО взаимодействие точечных зарядов происходит с силами прямо пропорциональными зарядам q₁ и q₂ и обратно пропорциональным и квадрату

Шарль Огюстен де КУЛОН Charles Augustin de Coulomb, 1736–1806

Французский инженер и физик. Большую часть своей жизни Кулон посвятил военной инженерии. Выйдя в отставку по окончании военно-инженерной службы, где он занимался строительством каналов и фортификационных укреплений во Франции и ее колониях в Карибском регионе, получил назначение в Париж на должность консультанта. Помимо электростатических явлений и магнетизма ученый экспериментально исследовал законы трения.



Силы взаимодействия одноименных и разноименных зарядов

Взаимодействие заряженных тел

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r^2}$$

Определение.

Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов q1 и q2 и обратно пропорциональными квадрату расстояния между ними и направлена по прямой соединяющей заряды

* Наличие вещества вокруг зарядов влияет на величину силы их взаимодействия.

$$F_{o} = \frac{1}{4\pi\varepsilon_{o}} \cdot \frac{q_{1}q_{2}}{r^{2}}$$

Кулоновская сила в вакууме

$$F = \frac{1}{4\pi\varepsilon_{o}} \cdot \frac{q_{1}q_{2}}{\varepsilon \cdot r^{2}}$$

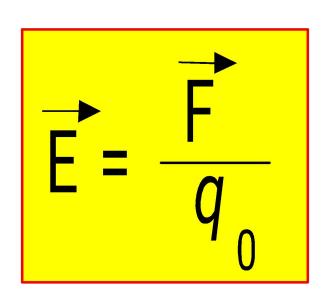
Кулоновская сила в среде

$$\frac{\mathsf{F_o}}{\mathsf{F}} = \varepsilon$$

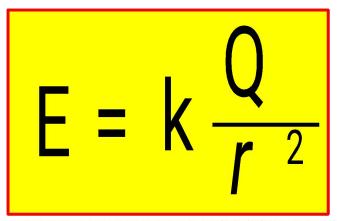
Е - диэлектрическая проницаемость среды, показывает, во сколько раз сила взаимодействия зарядов в вакууме (в отсутствии среды) больше силы взаимодействия в среде.

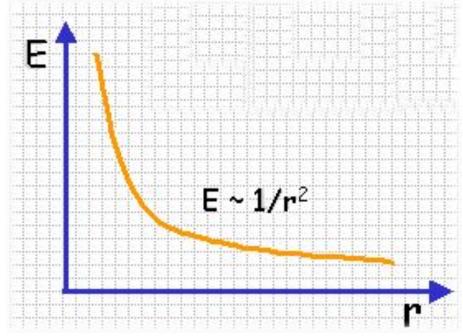
* Закон Кулона подобен закону всемирного тяготения

$$F = \gamma \frac{m_1 m_2}{r^2}$$


Напряженность электростатического поля

Это силовая характеристика электростатического поля


Напряженность электростатического поля


векторная физическая величина, равная отношению силы Кулона, с которой поле действует на пробный положительный заряд, помещенный в данную точку поля, к этому заряду:

Для точеного заряда

Напряженность электростатического поля в данной точке пространства численно равна силе Кулона, с которой поле действует на пробный единичный положительный заряд, помещенный в этой точке.

Единица напряженности — ньютон на кулон (Н/Кл).

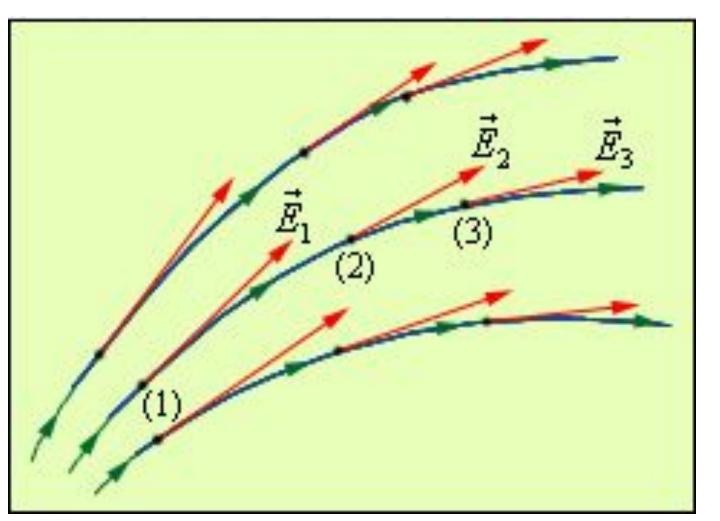
Направление вектора напряженности совпадает с направлением силы Кулона, действующей на единичный положительный заряд, помещенный в данную точку

ПОЛЯ

F = E q

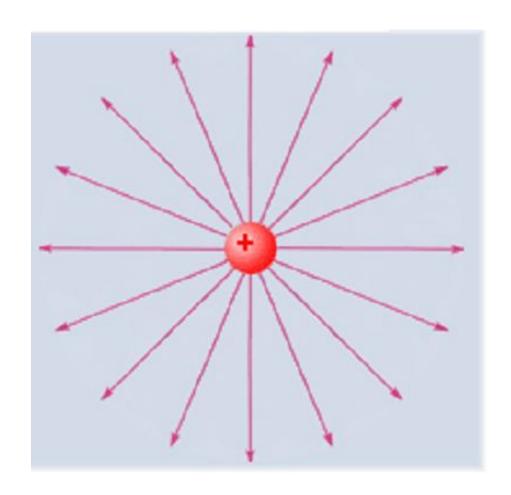
Лини напряженности электростатического поля

Графическое изображение электрического поля

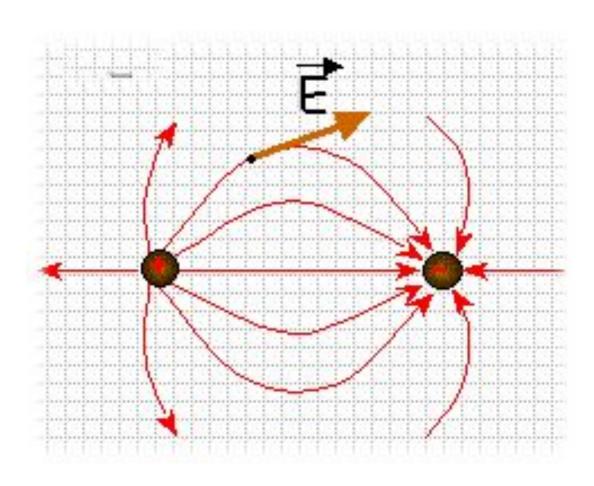


Для большей наглядности поле представляют непрерывными линиями напряженности.

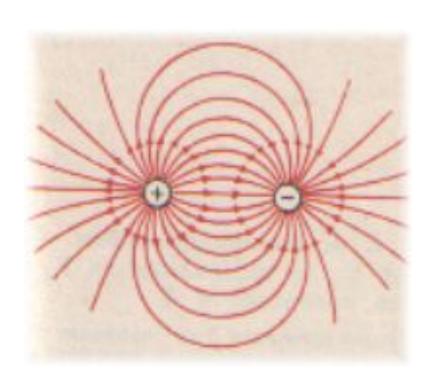
Пинии напряженности — пинии

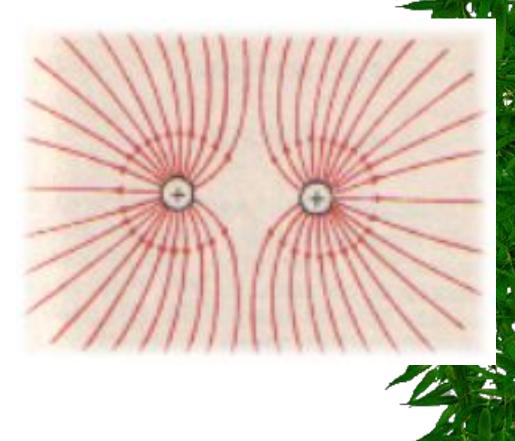

Линии напряженности — линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности электро-статического поля в данной точке.

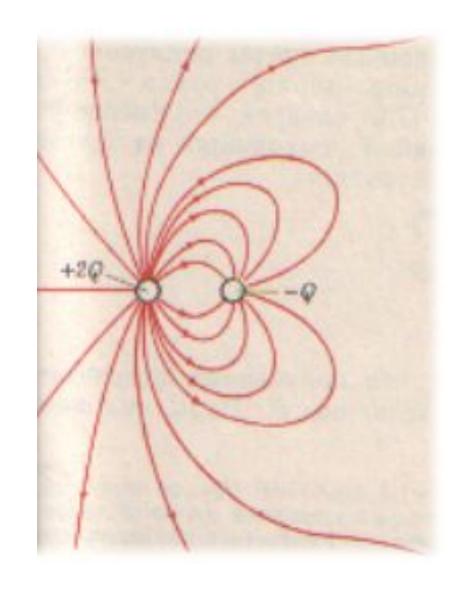
Силовые линии электрического поля



Силовые линии кулоновских полей




Силовые линии кулоновских полей



Силовые линии кулоновских полей -

Силовые линии кулоновских полей

Линии напряженности поля не пересекаются

(в противном случае напряженность электростатического поля не имела бы определенного направления в данной точке).

Линии напряженности электростатического поля, созданного точечным положительным зарядом, направлены радиально от заряда, так как пробный заряд в любой точке отталкивается от него.

Положительный заряд является источником линий напряженности.

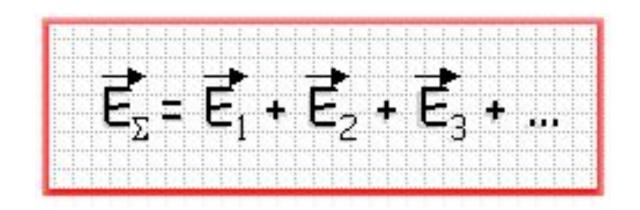
Линии напряженности выходят из изолированного положительного заряда и уходят в бесконечность

Линии напряженности электростатического поля, созданного точечным отрицательным зарядом, направлены радиально й заряду, так как пробный заряд в любой точке притягивается к нему.

Отрицательный заряд является стоком линий напряженности.

Линии напряженности входят в изолированный отрицательный заряд из бесконечности

Степень сгущения линий напряженности.


Число линий, пронизывающих единицу площади, характеризует модуль напряженности поля.

Электрическое поле, векторы напряженности которого одинаковы во всех точках пространства, называется однородным

Принцип суперпозиции

Напряженность поля системы зарядов в данной точке поля равна геометрической (векторной) сумме напряженностей полей, созданных в этой точке каждым зарядом в отдельности

