

Выделение. Физиология почек

Апрель 2019 роф. С.Л. Совершаева

План лекции

- 1. Нейрогуморальная регуляция почек. Роль нервных и гуморальных факторов .
- 2. Эндокринная функция почек.
- 3. Процесс мочеиспускания, его регуляция

1. НЕЙРОГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ПОЧЕК. РОЛЬ НЕРВНЫХ И ГУМОРАЛЬНЫХ ФАКТОРОВ.

Иннервация почек

Почечные нервы регулируют

- кровоток,
- уровень гломерулярной фильтрации, а также
- реабсорбции.

Это симпатические волокна крестцового сплетения

- НА и допамин
 - гладкие мышцы почечных сосудов (β2адренорецепторы)
 - !!! ренин-продуцирующие (β1-адренорецепторы)
 - клетки проксимальных канальцев, петли Генле, дистальных канальцев и собирательных трубочек
 - усиливают реабсорбцию в этих сегментах нефрона.

Гуморальная регуляция

- **Альдостерон** дистальные канальцы, собирательные трубочки
- ↑реабсорбция натрия,
- †секреция калия,
- уменьшение объема мочи

Ангиотензин II – афф. и эфф. артериолы –

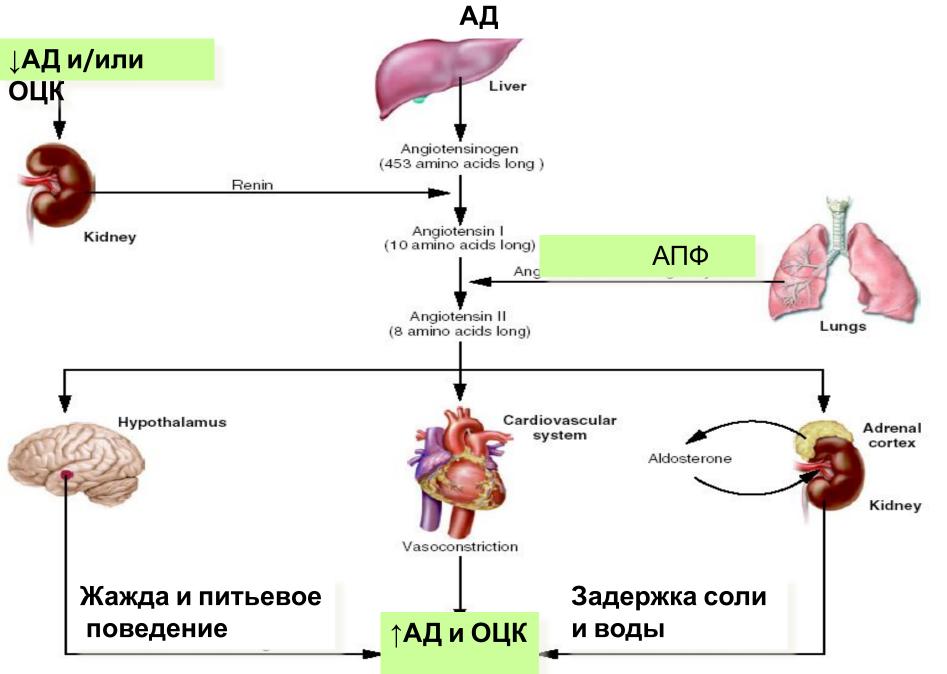
- сужение артериол,
- снижение фильтрации,
- стимуляция секреции альдостерона и АДГ,
 - формирование жажды, питьевого поведения,
 - задержка воды (уменьшение объема мочи)

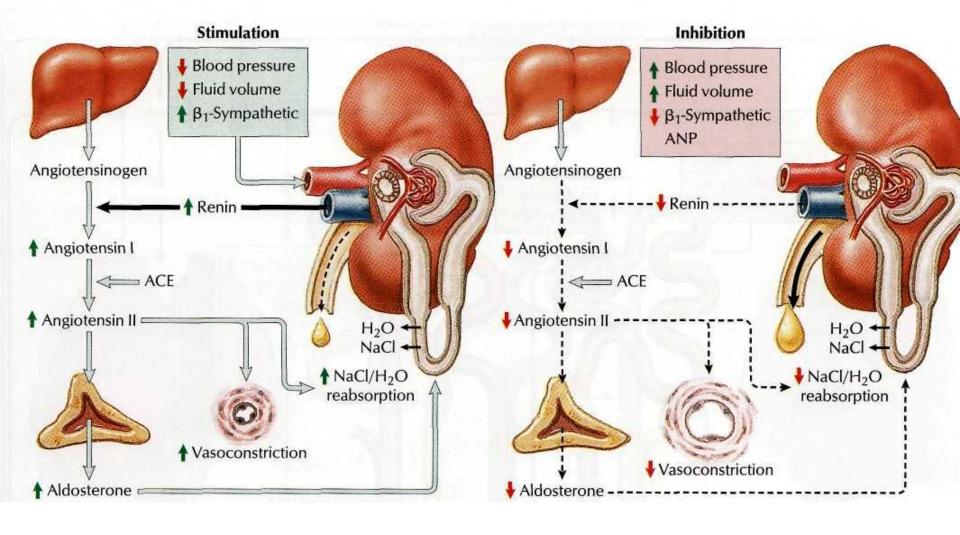
АДГ – собирательные трубочки –

- треабсорбция воды,
- снижение объема мочи,
- повышение ее концентрации

Натрий уретический пептид – афф. и эфф. артериолы, собирательные трубочки

- расширение афферентных артериол, сужение эфферентных,
- увеличение фильтрации,
- угнетение секреции ренина, АДГ и альдостерона,
- угнетение реабсорбции натрия в собирательных трубочках,
- повышение объема мочи


Катехоламины – ЮГА, афф. артериолы


- индукция секреции ренина,
- сужение афф. артериол,
- снижение фильтрации и объема мочи

Паратиреоидный гормон – проксимальные и дистальные канальцы, петля Генле

- ↑реабсорбция Са++ в петле и Мg++ в дистальных трубочках,
- угнетение реабсорбции фосфатов в проксимальных трубочках,
- индукция синтеза кальцтриола

Ренин-ангиотензин-альдостероновый механизм поддержания ОЦК и

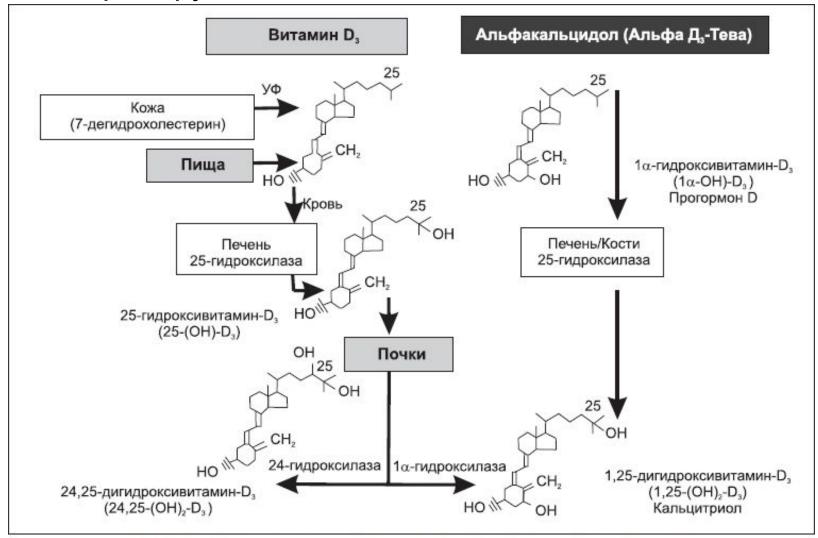
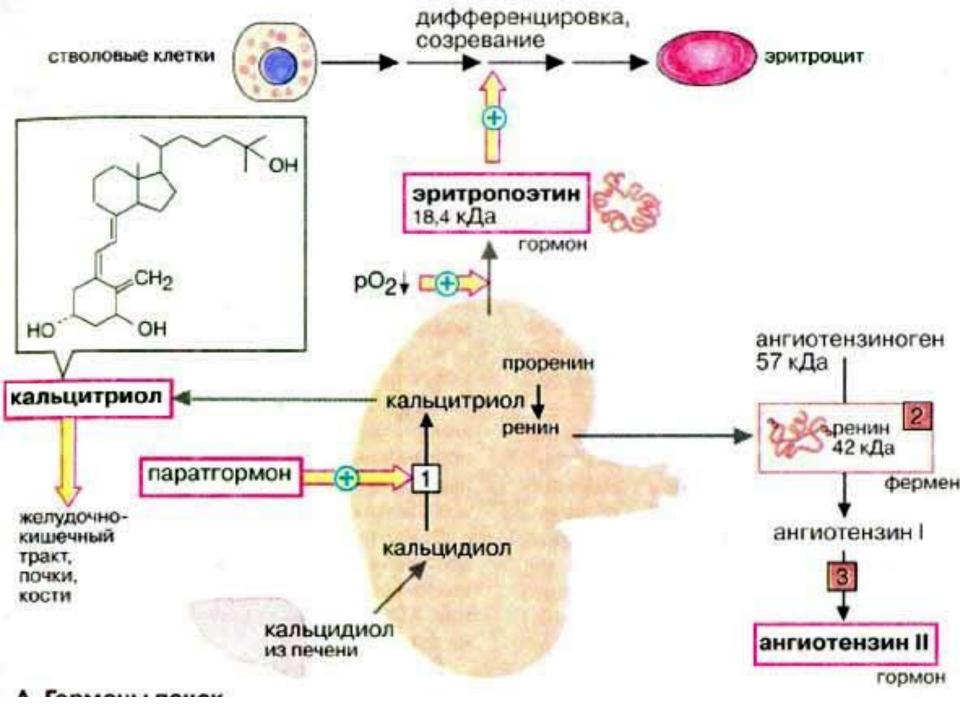
Ренин-ангиотензин-альдостероновый механизм: сохранение Необходимого давления и кровотока!!! В патологии – артериальная гипертензия!!!

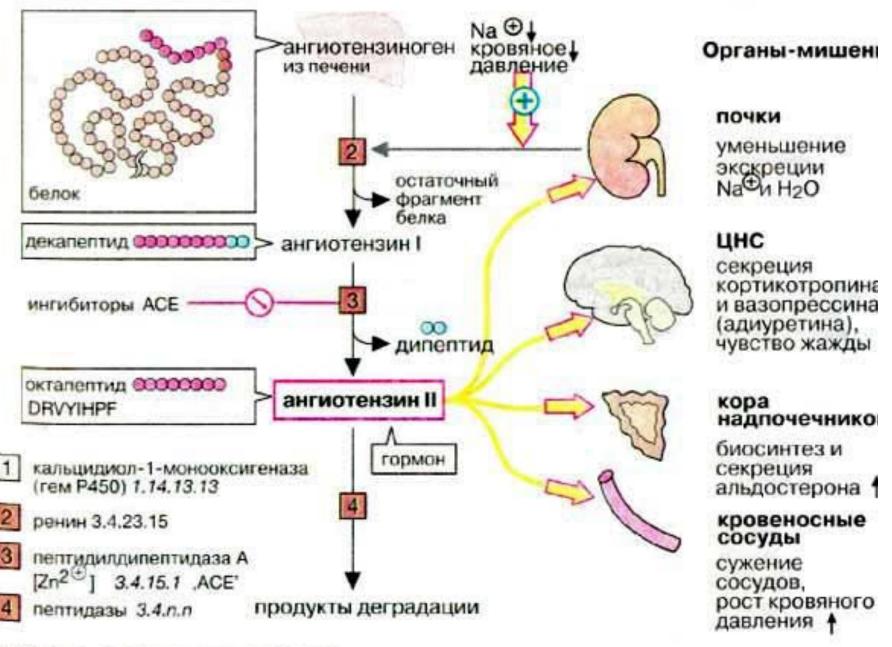
2. ЭНДОКРИННАЯ ФУНКЦИЯ ПОЧЕК

- Юкстагломерулярные клетки секреция ренина РААС.
- 2. В эпителиоцитах петель Генле и собирательных трубочек **простагландины**,
 - сосудорасширяющее действие и
 - увеличение клубочкового кровотока,
 - вследствие чего увеличивается объем выделяемой мочи.
- 3. В эпителиоцитах дистальных канальцев нефрона калликреины (ферменты), под воздействием которых
 - КИНИНОГЕН → КИНИНЫ
 - сосудорасширяющее действие (!!!),
 - снижение реабсорбции Na+ и воды ?
 - увеличение мочевыделения.

5. Кальцитриол - активная форма Д3 (в присутствии паратирина)

контролирует обмен кальция.

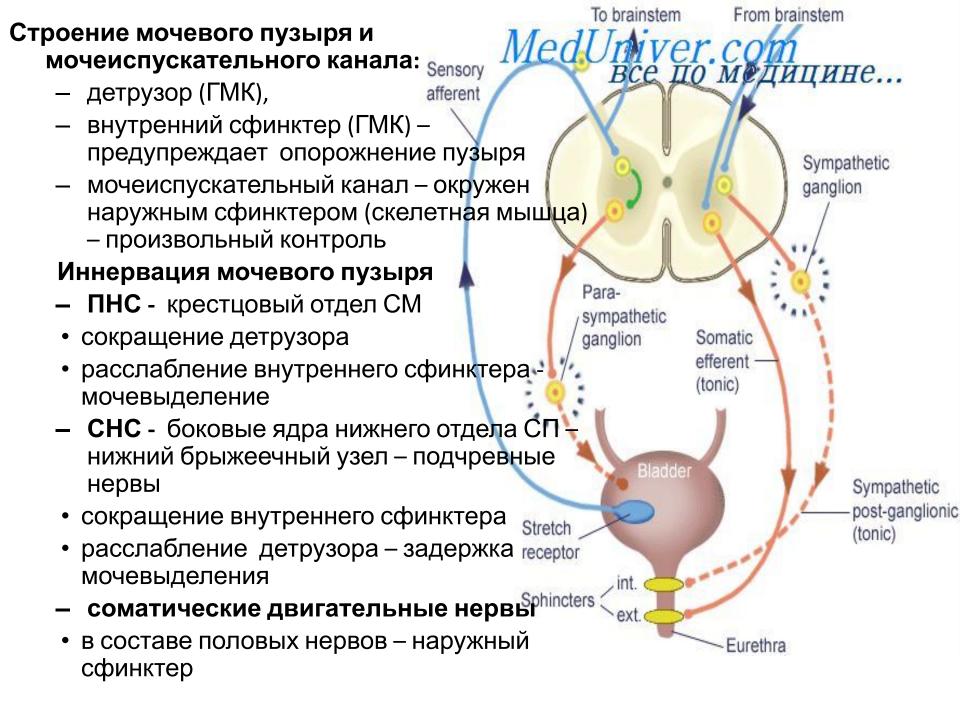




Рисунок 6. Метаболизм витамина D₃ и альфакальцидола (Альфа Д₃-Тева)

5. Эритропоэтин — полипептидный гормон, в

- вместе с «колонийстимулирующим фактором» контролирует дифференцировку стволовых клеток костного мозга,
- секреция стимулируется при гипоксии (pO $_{2}\downarrow$).
- анемия при почечной патологии
 - заместительной терапии препаратами генно-

инженерного Эг Костный мозг Стволовые Эритробласты Ретикулоциты Эритроциты Эритропоэтин Кислородный Интерстициальные клетки почек сенсор



Б. Система ренин-ангиотензин

3. ПРОЦЕСС МОЧЕИСПУСКАНИЯ, ЕГО РЕГУЛЯЦИЯ

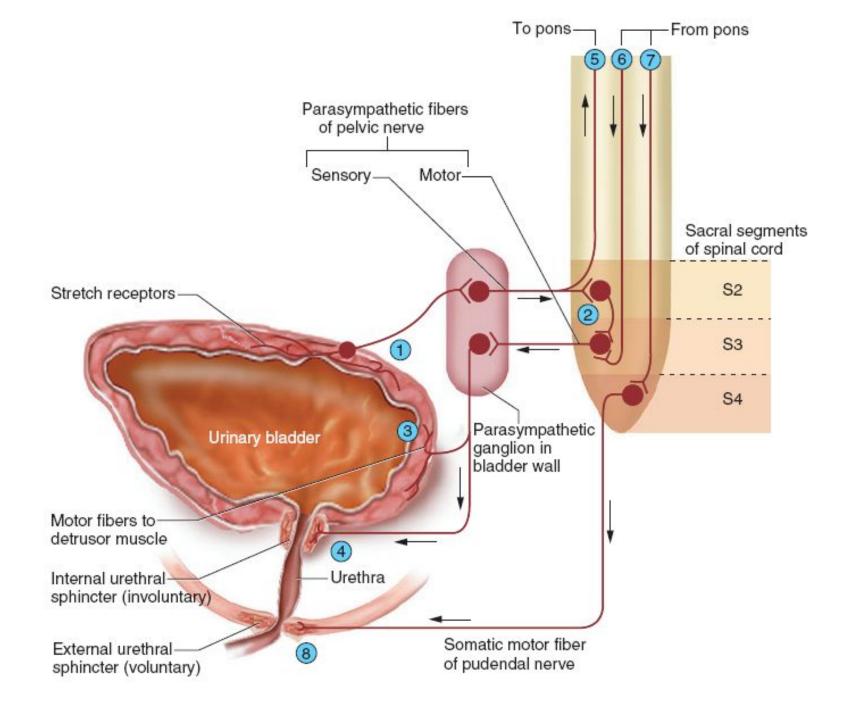
Мочеиспускание – периодически возникающее и произвольное опорожнение мочевого пузыря

собирательные трубочки почечные чашечки (периодические сокращения при растяжении) почечные лоханки мочеточники (перистальтические сокращения)

Наполнение мочевого пузыря

- тонус детрузора постоянное давление в 5-6 см вод. ст.
- V мочи от 300-400 мл повышение давления
- пики до 100 см вод. ст. мочеиспускательные сокращения
- эффективный объем мочевого пузыря V (мл) за 1 мочеиспускание 100- 400 мл
- остаточный объем пузыря не более 30 мл

Мочеиспускательный рефлекс


- давление в мочевом пузыре выше критического
- активируются рецепторы растяжения
- афференты тазовых нервов сигналы в спинной мозг
- эфференты тазовых нервов из ПНС сигналы к детрузору и внутреннему сфинктеру

Цикл мочеиспускания:

- быстрое нарастание давления
- период удержания давления
- возврат давления к исходному уровню

Мочеиспускание – процесс опорожнения мочевого пузыря

- произвольный контроль
 - наружный сфинктер мочеиспускательного канала скелетная мускулатура (контроль соматической НС)
- рефлекс мочеиспускания регулируется СНС и ПНС
 - в процессе заполнения мочевого пузыря
 - под влиянием СНС расслабление мускулатуры мочевого пузыря и сокращение внутреннего сфинктера уретры (ГМК)
 - когда пузырь полон
 - механорецепторы сигналы в спинной мозг парасимпатическая стимуляция сокращение м. пузыря (дертрузор)и расслабление внутреннего сфинктера
 - наружный сфинктер (поперечно-полосатая муск.)- произвольное расслабление мочеиспускание

Произвольное мочеиспускание

- Произвольное сокращение мышц живота повышение давления в м. пузыре
- Стимуляция рецепторов растяжения шейки мочевого пузыря и наружного отдела мочеиспускательного канала
- Возбуждение мочеиспускательного рефлекса и торможение наружного сфинктера
- Произвольное сокращение мышц промежности и наружного сфинктера задержание мочеиспускания
- Окончательно сформирован контроль мочеиспускания к 3-4 годам

Состав конечной мочи

- 95% воды и 5% растворенных веществ
- В норме большая часть растворенных веществ это
- мочевина, хлорид натрия и калия

Небольшие количества

- креатинина, мочевой кислоты, фосфатов, сульфатов,
- следы кальция, магния и иногда бикарбонатов
- следы билирубина (распад гемоглобина), уробилина

В патологии может обнаруживаться

- глюкоза
- свободный гемоглобин
- альбумин
- кетоны
- более, чем следы, билирубиновых пигментов

Количество мочи

- 1-2л
- Зависит от
 - Количества и состава выпитой жидкости
 - Температуры среды (↓t ° ↑ диурез)
 - потоотделения
 - Суточного ритма (↓ночью)
 - Приема лекарственных препаратов

Цвет мочи зависит от

- количества выделенной мочи и от выведения пигментов
 - от светло-желтого до темного
- некоторых продуктов и лекарственных препаратов
 - после употребления свеклы, амидопирина моча краснеет;
 - акрихин и биомицин, придают моче ярко-желтую окраску,