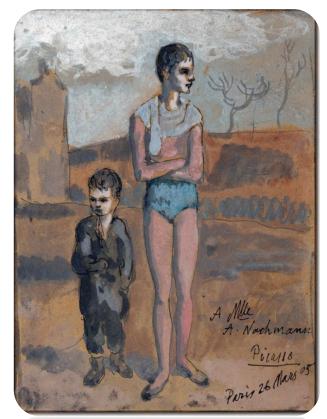


Тенденция казалержке полового


Центр детской **изограсти в разражения** логии г. Москвы

Современная социобиологическая тенденция

к.м.н. Жидков М.В. д.м.н., профессор Тарусин Д.И. проф.Матар А.А.

MOCKBA 2020

- •Пубертат физиологический феномен, определяющий переход от половой незрелости к половому созреванию
- •Современная концепция физиологии начала пубертата совокупность иерархических генетических взаимодействий, регулирующих нейроэндокринный контроль инициации полового созревания

Средние сроки начала полового созревания

- Девочки 10,5 лет (8-13 лет)
- Мальчики 11,5 лет (9-14 лет)

Критерий начала полового созревания у мальчиков – гонадархе

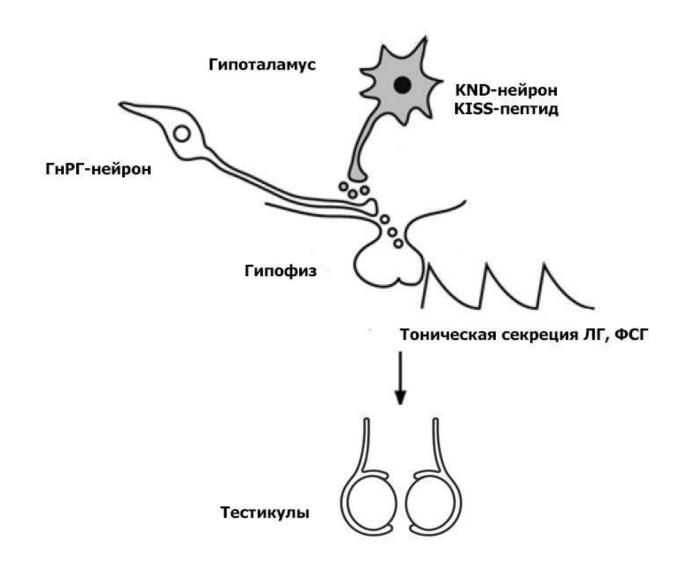
Увеличение объема яичка до 3,5-4 мл

Последовательность изменений пубертатных

R.A. Rey et al.

Регуляция полового созревания:

- Генетический факторы
- Нейропептидная регуляция
- Метаболический контроль
- Влияние внешних факторов


• 50-70% причин, определяющих вариабельность сроков «запуска» пубертата составляют генетические факторы

Основные генетические локусы, участвующие в регуляции пубертата

Gene	Protein	Function	Disease
KISS1	Kisspeptin	GnRH secretion	NHH
GPR54 (KiSS1R)	Kisspeptin receptor	GnRH secretion stimulation	NHH
GNRH1	Gonadotropin-releasing hormone	GnRH synthesis	NHH
GNRHR	GnRH receptor	GnRH signaling	NHH
TAC3	Neurokinin B	Unknown	NHH
TACR3	Neurokinin B receptor	Unknown	NHH
FGF8	Fibroblast growth factor 8	Migration of GnRH neurons	KS/NHH
FGFR1	Receptor for FGF8 protein	Migration of GnRH neurons	KS/NHH
PROK2	Prokineticin	Migration of GnRH neurons	KS/NHH
PROKR2	Prokineticin receptor	Migration of GnRH neurons	KS/NHH
CHD7	Chromodomain helicase DNA-binding protein 7	Development of GnRH neurons	CHARGE syndrome, KS/NHI-
NELF	Nasal embryonic LHRH factor	Migration of GnRH neurons	KS
KAL1	Anosmin-1	Migration of GnRH neurons	KS
LEP	Leptin	GnRH secretion	Obesity and HH
LEPR	Leptin receptor	GnRH secretion	Obesity and HH
PC1	Prohormone convertase	Cleavage of POMC	Obesity and HH
HESX1	Pituitary transcription factor	Pituitary development	Hypopituitarism
LHX3	Pituitary transcription factor	Pituitary development	Hypopituitarism
PROP1	Pituitary transcription factor	Pituitary development	Hypopituitarism

GnRH gonadotropin-releasing hormone, NHH normosmic hypogonadotropic hypogonadism, HH hypogonadotropic hypogonadism, KS Kallmann syndrome, POMC pro-opiomelanocortin

Схема нейропептидной регуляции пубертата

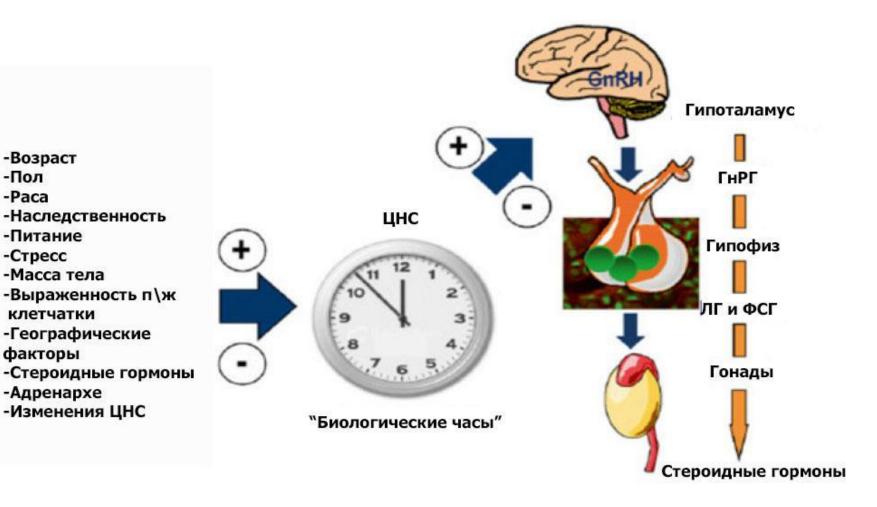
Факторы определяющие начало пубертата

-Возраст

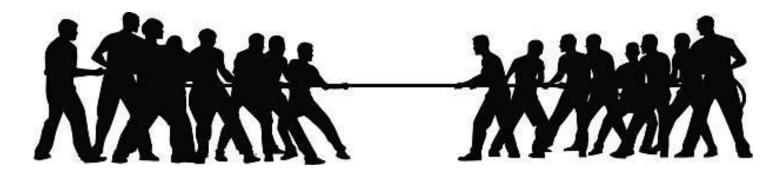
-Питание

клетчатки

-Адренархе


факторы

-Географические


-Изменения ЦНС

-Стресс -Масса тела

-Пол -Paca S. Tabassum and S. Kirmani

- Характер функциональных структур, определяющих регуляцию начала полового созревания включает не только активационные, но и ингибирующие механизмы
- Ингибирование и активация пубертата осуществляется как стероид-зависимыми, так и стероид-независимыми механизмами
- На настоящий момент нет четкого ответа, что является непосредственной командой к началу пубертата исчезновение ингибирования или возникновение активации нейроэндокринных систем

Этапы гормональной регуляции формирования мужской репродуктивной системы


«Гормональные окна»

- Фетальный период 10-20 нед уровень тестостерона плода соответствует аналогичному показателю взрослого мужчины (активаторы плацентарный ХГЧ, далее гипофизарный ЛГ)
- «Неонатальный пубертат» со 2-й нед до 6 мес
- Адренархе (6-9 лет)
- Пубертат (9-14 лет)

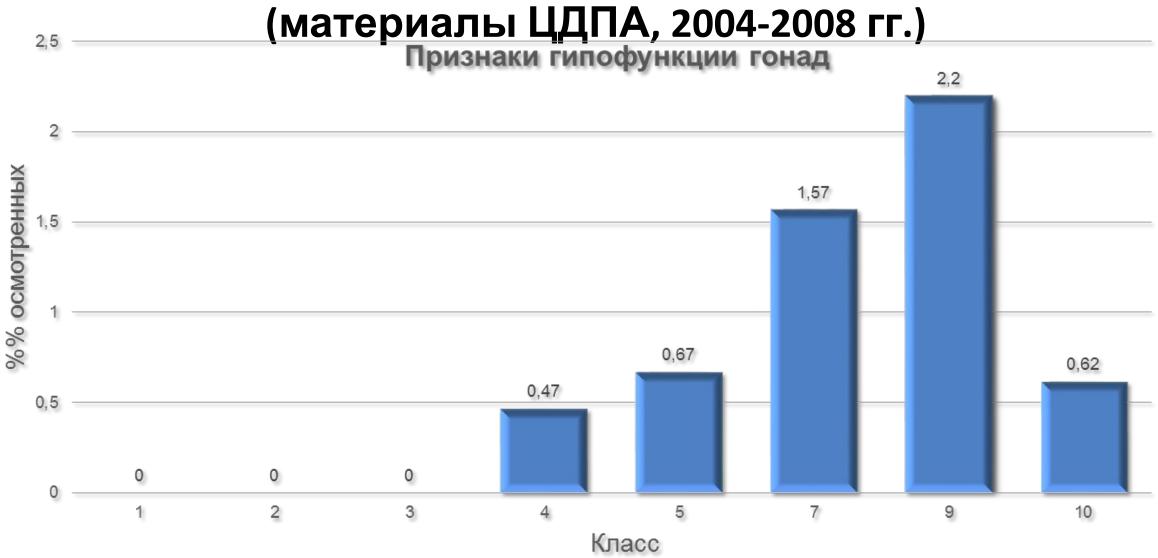
Этапы гормональной регуляции формирования мужской репродуктивной системы

- Возраст с 2-х лет до 11-12 лет "физиологический гипогонадизм"
- Период детства не равнозначен периоду «гонадального покоя»
- Несмотря на низкую концентрацию гонадотропных гормонов, активная секреция АМГ и ингибина В являются маркерами функции яичек
- Изменение эндокринной активности в периоды «гормональных окон» формирует этапность созревания мужской репродуктивной системы

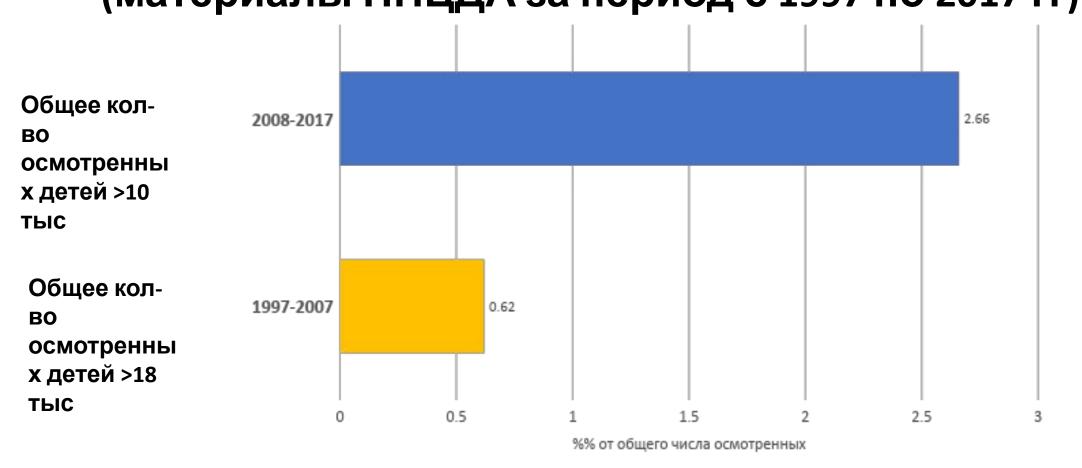
Этапы гормональной регуляции формирования мужской репродуктивной системы

Определение задержки полового развития

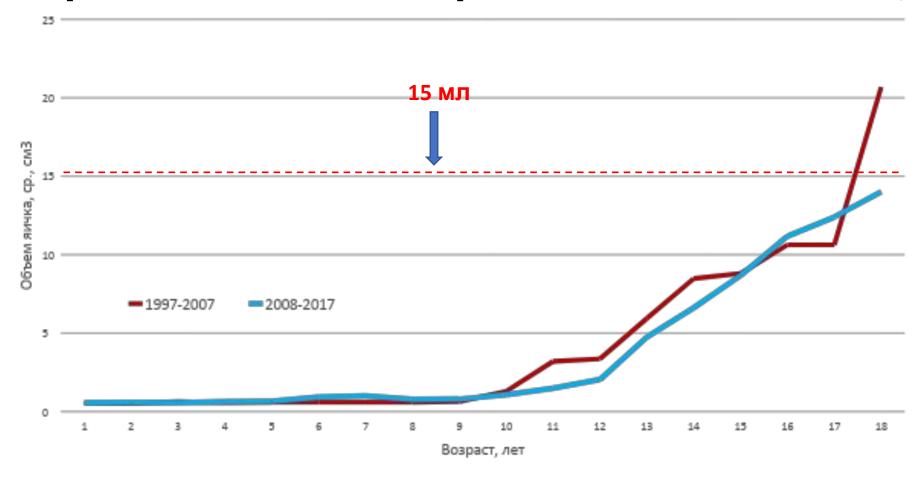
- Задержка полового развития (ЗПР) –
- отсутствие гонадархе к 14 годам
- задержка появления вторичных половых признаков более чем на 2 года


Проблемы установки диагноза

- Отсутствуют четкие критерии установки диагноза ЗПР
- Несвоевременность установки диагноза
- Отсутствие единого мнения о «профильном специалисте»


Доля ЗПР в структуре педиатрического приема

- Частота обращений по поводу ЗПР 0,4-9,8% от общего числа осмотренных детей (литературные данные)
- Частота обращении мальчики-девочки 9:1(литературные данные)


Результаты скрининговых осмотров московских школьников

Результаты выявления признаков гипофункции яичек при первичном осмотре андролога (материалы НПЦДА за период с 1997 по 2017 гг)

Возрастная динамика увеличения объема яичек в различные временные периоды (материалы ЦДПА за период с 1997 по 2017 гг)

Возрастная динамика изменения объема гонад у детей

Возраст, лет	TDV, мл	TDV, мл ст.откл.	Процентиль,	Процентиль,	TSV, мл среднее	TSV, мл ст.откл.	Процентиль,	Процентиль,
	среднее		10%	90%			10%	90%
1	0,554	0,173	0,370	0,770	0,534	0,187	0,320	0,710
2	0,581	0,184	0,390	0,900	0,579	0,187	0,390	0,850
3	0,565	0,207	0,340	0,870	0,632	0,226	0,380	0,930
4	0,640	0,211	0,425	0,995	0,671	0,284	0,435	1,030
5	0,654	0,218	0,420	0,960	0,680	0,206	0,440	0,900
6	0,928	1,655	0,460	1,000	0,724	0,193	0,490	1,060
7	1,012	1,653	0,430	1,150	0,753	0,268	0,420	1,150
8	0,791	0,264	0,350	1,200	1,013	1,530	0,380	1,240
9	0,796	0,247	0,520	1,155	0,822	0,270	0,500	1,195
10	1,073	0,833	0,550	1,600	1,115	0,767	0,500	1,810
11	1,491	0,875	0,570	3,110	1,431	0,767	0,600	2,540
12	2,039	1,536	0,710	3,700	2,390	2,149	0,770	4,930
13	4,748	3,671	1,100	10,800	5,199	4,267	1,210	12,110
14	6,613	3,249	2,580	11,350	6,787	3,932	2,670	11,650
15	8,669	3,789	2,320	13,830	7,901	3,673	2,040	13,100
16	11,189	4,266	4,460	16,300	11,148	4,230	5,400	16,130
17	12,402	3,282	8,600	14,280	11,279	2,407	7,440	15,000
18	14,005	5,838	10,500	18,970	11,804	3,855	10,530	14,760

Ультразвуковые критерии дефицита объема яичек у взрослых пациентов

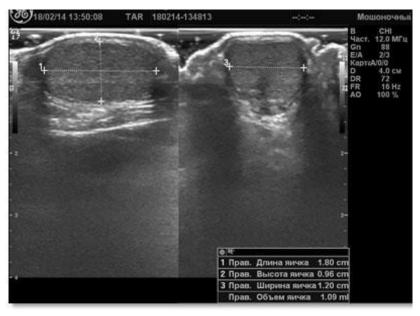
≥15 см₃ – нормальный объем

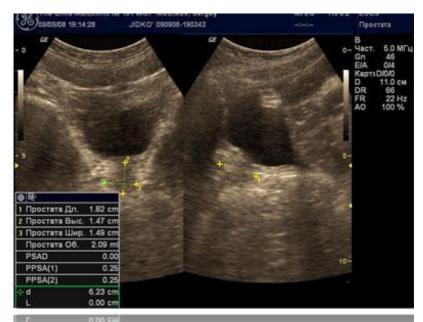
10-15< см₃ – гипотрофия гонад

<10 см₃ – критическое снижение объема яичка

Недостаточный объем гонад причина формирования гипогонадизма и как следствие - патоспермии

Этиологическая структура мужского бесплодия


Более половины этиологических факторов «родом из детства»


Возможные причины репродуктивной децелерации

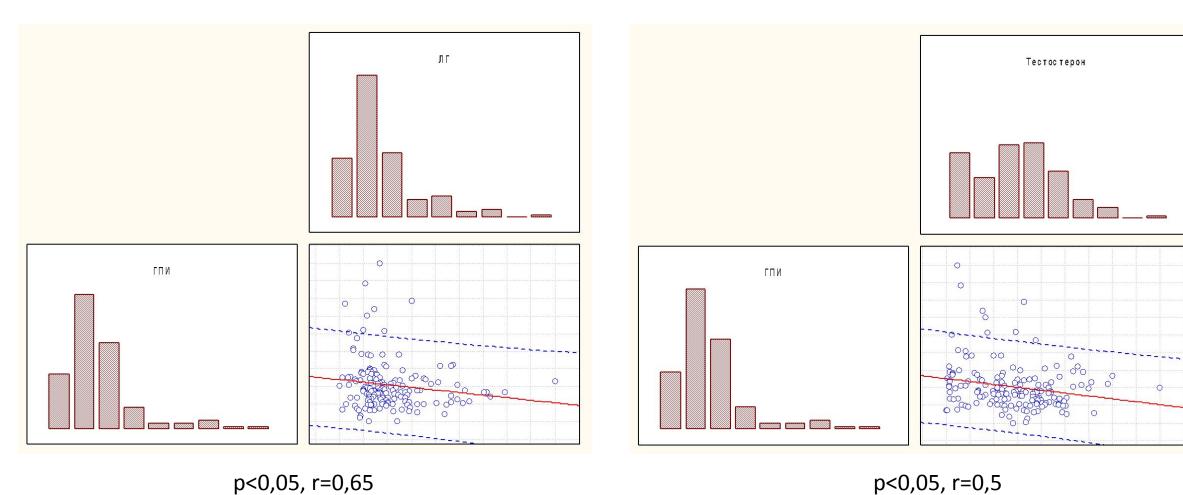
- Естественные социо-биологические процессы
- Техногенные факторы
- Проблемы в системе физического воспитания детей
- Адаптивные процессы в условиях изменившихся социально-экономических условий
- Увеличение доли детей родившихся с использованием ВРТ

Ультразвуковая диагностика

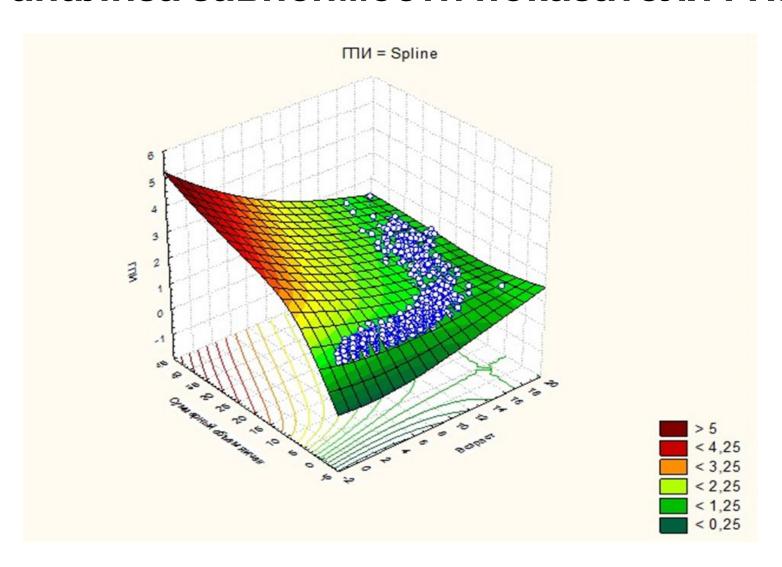
- Оценка объема гонад
- Оценка объема предстательной железы

-методика проста в техническом исполнении

- -доступна практически в любом медицинском учреждении
- -существуют четко описанные возрастные критерии


Возрастная динамика изменения объема

предстат		WAHASLI
	CHOULDE	WEIIE JUI


	поедстат	к ионапа	KEHEKHI	
Возраст, лет	Простата объем, мл, среднее	Простата объем, мл ст. отклон.	Процентиль, 10%	Процентиль, 90%
1	0,76	0,28	0,45	1,13
2	0,87	0,27	0,51	1,14
3	0,95	0,26	0,60	1,23
4	1,06	0,33	0,63	1,49
5	1,16	0,38	0,76	1,68
6	1,16	0,46	0,72	1,66
7	1,18	0,31	0,76	1,58
8	1,20	0,38	0,75	1,77
9	1,35	0,46	0,79	1,93
10	1,78	2,05	0,80	2,60
11	1,70	0,86	0,70	3,05
12	2,60	1,81	1,10	4,71
13	5,20	4,24	1,20	12,74
14	8,86	5,36	2,06	15,31
15	10,79	5,70	2,91	18,95
16	14,51	6,68	6,25	24,20
17	16,08	5,64	8,80	22,81
18	17,32	6,77	11,41	24,82

Возрастная динамика изменения гонадально-простатического индекса (ГПИ)

Статистическая корреляция между показателем ГПИ уровнем ЛГ и тестостерона

Результаты многомерного статистического анализа зависимости показателя ГПИ

- Показатель ГПИ позволяет адекватно оценивать уровень развития репродуктивной системы мальчика в любом возрасте, а не только в пре- и пубертатном периоде
- Использование ГПИ позволяет четко дифференцировать «конституциональную задержку» и гипотрофию гонад

Критерии оценки ГПИ

- Менее «1,5» гармоничное развитие ОРС, при наличии снижения объема гонад относительно возрастной нормы конституциональная задержка развития
- От «1,5» до «2» начальные признаки гипотрофии гонад, возможная конституциональная задержка развития
- Более «2» признаки гипотрофии гонад
- Более «3» признаки гипоплазии гонад, необходимо исключение синдромальных состояний (Синдром Каллмана, Прадера-Вилли, Клайнфельтера и т.д.)

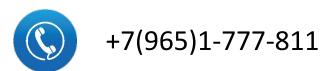
 Наличие признаков асинхронного формирования органов репродуктивной системы (репродуктивная диссинхрония) – Тенденция к задержке полового развития

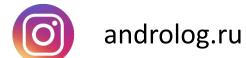
Терапия ТЗПР

- Принципы терапии
- использование триггерных периодов (использование естественных периодов активации гормонального фона адренархе, препубертатная активация гипофиза)
- «step by step therapy» (последовательное, многокомпонентное воздействие на органы гипоталамо-гипофизарно-гонадальной оси)
- обязательный динамический контроль (УЗИ ОРС, оценка гормонального профиля)

Терапия ТЗПР

- Косвенные стимулирующие факторы
- адекватная физическая нагрузка
- увеличение продолжительности светового дня (инсоляция, дополнительные источники света)
- рациональное питание (холестерин, контроль уровня Na+)


Терапия ТЗПР


- Медикаментозная терапия
- использование препаратов Тестостерона
- использование препаратов ХГЧ
- препараты L-карнитина (Карнитон, Элькар)
- препараты оказывающие трофическое влияние на органы репродуктивной системы (Токоферол, Кудесан, Тесталамин)
- витаминотерапия, микронутриенты (вит гр.В, вит Д, ПНЖК)

Выводы

- Децелерация репродуктивной системы мальчиков подростков современная тенденция, требующая системного анализа и дальнейшего динамического наблюдения
- Тенденции к задержке полового развития могут быть выявлены до наступления пубертатного периода
- Создание комплекса простых скрининговых диагностических мероприятий позволяет диагностировать негативные проявления репродуктивной диссинхронии и проводить необходимую коррекцию состояния
- Своевременное выявление и нивелирование тенденции к задержке полового развития у мальчиков в перспективе способствует профилактике проблемы бесплодного брака

СПАСИБО ЗА ВНИМАНИЕ!

