An Introduction to Parallel Programming

Peter Pacheco

Chapter 1

ENOISIRVANIMIINIE;

/0
/

Why Parallel Computing?

Roadmap

= Why we need ever-increasing performance.
= Why we’re building parallel systems.

= Why we need to write parallel programs.

=« How do we write parallel programs?

« What we’ll be doing.

« Concurrent, parallel, distributed!

angns Jsydey) #

Changing times

« From 1986 — 2002, microprocessors were
speeding like a rocket, increasing in
performance an average of 50% per year.

« Since then, it's dropped to about 20%
Increase per year.

An intelligent solution

» Instead of designing and building faster
microprocessors, put multiple processors

on a single integrated circuit.

Now it's up to the programmers

« Adding more processors doesn’t help

much if programmers aren’'t aware of
them...

= ... ordon’'t know how to use them.

» Serial programs don’t benefit from this
approach (in most cases).

Why we need ever-increasing

performance

« Computational power is increasing, but so
are our computation problems and needs.

« Problems we never dreamed of have been
solved because of past increases, such as
decoding the human genome.

« More complex problems are still waiting to
be solved.

Climate modeling

Protein folding

gy
b h

Drug discovery

MK

MORGAN KAUFMANN

search

re

Ener

z
z
<
Iz
-
=
<
x
z
<
o
«
o
z

S

S

Data anal

Why we’re building parallel

systems

« Up to now, performance increases have
been attributable to increasing density of
transistors.

=« But there are
Inherent
problems.

A little physics lesson @)

« Smaller transistors = faster processors.

» Faster processors = increased power
consumption.

» INncreased power consumption = increased
heat.

» Increased heat = unreliable processors.

Solution

« Move away from single-core systems to
multicore processors.

« ‘core” = central processing unit (CPU)

« Introducing parallelism!!!

Why we need to write parallel
programs

« Running multiple instances of a serial
program often isn’t very useful.

« | hink of running multiple instances of your
favorite game.

=« What you really want is for
it to run faster.

Approaches to the serial problem

« Rewrite serial programs so that they're
parallel.

« Write translation programs that
automatically convert serial programs into
parallel programs.
= [his is very difficult to do.
= Success has been limited.

More problems

» SOome coding constructs can be
recognized by an automatic program
generator, and converted to a parallel
construct.

« However, it's likely that the result will be a
very inefficient program.

« Sometimes the best parallel solution is to
step back and devise an entirely new
algorithm.

Example

« Compute n values and add them together.
« Serial solution:

som: =0

for (1 =0; i <n; i#t) {
Compute_next_value(. . .);
sum += X;

X =

Example (cont.)

« We have p cores, p much smaller than n.

« Each core performs a partial sum of
approximately n/p values.

€2;'my_sum =

my: £Irst & = « o o

my last_ i = . . . ;

for (my_i = my_first_i; my_i < my_last_i; my_i++) {
my_Xx = Compute_next_value(. . .);
my_sum += my_X;

} % Each core uses it's own private variables
and executes this block of code

independently of the other cores.

Example (cont.)

« After each core completes execution of the
code, is a private variable my sum
contains the sum of the values computed
by its calls to Compute next value.

» EX., 8 cores, n =24, then the calls to
Compute next value return:

1,43, 9,28, 51,1, 52,7, 2,50, 418, 6,51, 2,39

Example (cont.)

=« Once all the cores are done computing
their private my sum, they form a global
sum by sending results to a designated
“master” core which adds the final result.

Example (cont.)

if (I'm the master core) {
sum = my_X;
for each core other than myself {

receive value from core;
sum += value;

}
} else {
send my_X to the master;

Example (cont.)

my_sum 8 19 7 15 7 13 12 14

Global sum
8+19+7+15+7+13+12+ 14 =95

my_sum 95 19 7 15 7 13 12 14

But wait!

There’'s a much better way
to compute the global sum.

Better parallel algorithm

Don’t make the master core do all the
work.

Share it among the other cores.

Pair the cores so that core 0 adds its result
with core 1’'s result.

Core 2 adds its result with core 3’s result,
etc.

Work with odd and even numbered pairs of
cores.

Better parallel algorithm (cont.)

» Repeat the process now with only the
evenly ranked cores.

=« Core 0 adds result from core 2.
« Core 4 adds the result from core 6, etc.

=« Now cores divisible by 4 repeat the
process, and so forth, until core 0 has the
final result.

Multiple cores forming a global
sum

Cores

é

¢

Analysis

« In the first example, the master core
performs 7 receives and 7 additions.

« In the second example, the master core
performs 3 receives and 3 additions.

« | he improvement is more than a factor of 2!

Analysis (cont.)

= | he difference is more dramatic with a
larger number of cores.

« If we have 1000 cores:

« [he first example would require the master to
perform 999 receives and 999 additions.

= [he second example would only require 10
receives and 10 additions.

« [hat's an improvement of almost a factor
of 100!

How do we write parallel
programs?

« lask parallelism

« Partition various tasks carried out solving the
problem among the cores.

« Data parallelism

« Partition the data used in solving the problem
among the cores.

= Each core carries out similar operations on it's
part of the data.

Professor P

15 questions
300 exams

Professor P’s grading assistants

&«

Division of work —
data parallelism

100 exams

TA#1 @
@ TA#3

100 exams

@TA#Z

100 exams

Division of work —
task parallelism

TA#1

"
Im

(,; TA#3

— Questions 11 - 15

Questions 1 -5

TA#2

Questions 6 - 10

Division of work —
data parallelism

sum = 0;
for (i = 0; i < n; i++) {
x = Compute_next_value(. . .);

sum += X;

Division of work —
task parallelism

if (I'm the master core) {
sum = my_X;
for each core other than myself {
receive value from core;
sum += value;

}

Y ELEE | Tasks

send my_x to the master; pnReceiving
} »Addition

Coordination

« Cores usually need to coordinate their work.

« Communication —one or more cores send
their current partial sums to another core.

» Load balancing — share the work evenly
among the cores so that one is not heavily
loaded.

» Synchronization — because each core works
at its own pace, make sure cores do not get
too far ahead of the rest.

What we’ll be doing

« Learning to write programs that are
explicitly parallel.

« Using the C language.

« Using three different extensions to C.
« Message-Passing Interface (MPI)
« Posix Threads (Pthreads)
« OpenMP

Type of parallel systems

« Shared-memory

« Ihe cores can share access to the computer’s
memory.

= Coordinate the cores by having them examine
and update shared memory locations.
« Distributed-memory
« Each core has its own, private memory.

= [he cores must communicate explicitly by
sending messages across a network.

Type of parallel systems

Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
> =
(@)
= Z
Core p—1 Core p-1 Memory p—1

(a) (b)

Shared-memory Distributed-memory

Terminology

« Concurrent computing — a program is one
iIn which multiple tasks can be in progress
at any instant.

« Parallel computing — a program is one in
which multiple tasks cooperate closely to
solve a problem

» Distributed computing — a program may
need to cooperate with other programs to
solve a problem.

Concluding Remarks (1)

The laws of physics have brought us to the
doorstep of multicore technology.

Serial programs typically don’t benefit from
multiple cores.

Automatic parallel program generation
from serial program code isn’'t the most
efficient approach to get high performance
from multicore computers.

Concluding Remarks (2)

» Learning to write parallel programs
involves learning how to coordinate the

cores.

« Parallel programs are usually very
complex and therefore, require sound
program techniques and development.

