
1Copyright © 2010, Elsevier Inc. All rights Reserved

Chapter 1

Why Parallel Computing?

An Introduction to Parallel Programming
Peter Pacheco

2Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap
■ Why we need ever-increasing performance.
■ Why we’re building parallel systems.
■ Why we need to write parallel programs.
■ How do we write parallel programs?
■ What we’ll be doing.
■ Concurrent, parallel, distributed!

C
hapter S

ubtitle

3

Changing times

Copyright © 2010, Elsevier Inc. All rights Reserved

■ From 1986 – 2002, microprocessors were
speeding like a rocket, increasing in
performance an average of 50% per year.

■ Since then, it’s dropped to about 20%
increase per year.

4

An intelligent solution

Copyright © 2010, Elsevier Inc. All rights Reserved

■ Instead of designing and building faster
microprocessors, put multiple processors
on a single integrated circuit.

5

Now it’s up to the programmers
■ Adding more processors doesn’t help

much if programmers aren’t aware of
them…

■ … or don’t know how to use them.

■ Serial programs don’t benefit from this
approach (in most cases).

Copyright © 2010, Elsevier Inc. All rights Reserved

6

Why we need ever-increasing
performance
■ Computational power is increasing, but so

are our computation problems and needs.
■ Problems we never dreamed of have been

solved because of past increases, such as
decoding the human genome.

■ More complex problems are still waiting to
be solved.

Copyright © 2010, Elsevier Inc. All rights Reserved

7

Climate modeling

Copyright © 2010, Elsevier Inc. All rights Reserved

8

Protein folding

Copyright © 2010, Elsevier Inc. All rights Reserved

9

Drug discovery

Copyright © 2010, Elsevier Inc. All rights Reserved

10

Energy research

Copyright © 2010, Elsevier Inc. All rights Reserved

11

Data analysis

Copyright © 2010, Elsevier Inc. All rights Reserved

12

Why we’re building parallel
systems

■ Up to now, performance increases have
been attributable to increasing density of
transistors.

■ But there are
inherent
problems.

Copyright © 2010, Elsevier Inc. All rights Reserved

13

A little physics lesson

■ Smaller transistors = faster processors.
■ Faster processors = increased power

consumption.
■ Increased power consumption = increased

heat.
■ Increased heat = unreliable processors.

Copyright © 2010, Elsevier Inc. All rights Reserved

14

Solution

■ Move away from single-core systems to
multicore processors.

■ “core” = central processing unit (CPU)

Copyright © 2010, Elsevier Inc. All rights Reserved

■ Introducing parallelism!!!

15

Why we need to write parallel
programs

■ Running multiple instances of a serial
program often isn’t very useful.

■ Think of running multiple instances of your
favorite game.

■ What you really want is for
it to run faster.

Copyright © 2010, Elsevier Inc. All rights Reserved

16

Approaches to the serial problem

■ Rewrite serial programs so that they’re
parallel.

■ Write translation programs that
automatically convert serial programs into
parallel programs.
■ This is very difficult to do.
■ Success has been limited.

Copyright © 2010, Elsevier Inc. All rights Reserved

17

More problems

■ Some coding constructs can be
recognized by an automatic program
generator, and converted to a parallel
construct.

■ However, it’s likely that the result will be a
very inefficient program.

■ Sometimes the best parallel solution is to
step back and devise an entirely new
algorithm.

Copyright © 2010, Elsevier Inc. All rights Reserved

18

Example

■ Compute n values and add them together.
■ Serial solution:

Copyright © 2010, Elsevier Inc. All rights Reserved

19

Example (cont.)

■ We have p cores, p much smaller than n.
■ Each core performs a partial sum of

approximately n/p values.

Copyright © 2010, Elsevier Inc. All rights Reserved

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.

20

Example (cont.)

■ After each core completes execution of the
code, is a private variable my_sum
contains the sum of the values computed
by its calls to Compute_next_value.

■ Ex., 8 cores, n = 24, then the calls to
Compute_next_value return:

Copyright © 2010, Elsevier Inc. All rights Reserved

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

21

Example (cont.)

■ Once all the cores are done computing
their private my_sum, they form a global
sum by sending results to a designated
“master” core which adds the final result.

Copyright © 2010, Elsevier Inc. All rights Reserved

22

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

23

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14

24Copyright © 2010, Elsevier Inc. All rights Reserved

But wait!
There’s a much better way
to compute the global sum.

25

Better parallel algorithm

■ Don’t make the master core do all the
work.

■ Share it among the other cores.
■ Pair the cores so that core 0 adds its result

with core 1’s result.
■ Core 2 adds its result with core 3’s result,

etc.
■ Work with odd and even numbered pairs of

cores.

Copyright © 2010, Elsevier Inc. All rights Reserved

26

Better parallel algorithm (cont.)

■ Repeat the process now with only the
evenly ranked cores.

■ Core 0 adds result from core 2.
■ Core 4 adds the result from core 6, etc.

■ Now cores divisible by 4 repeat the
process, and so forth, until core 0 has the
final result.

Copyright © 2010, Elsevier Inc. All rights Reserved

27

Multiple cores forming a global
sum

Copyright © 2010, Elsevier Inc. All rights Reserved

28

Analysis

■ In the first example, the master core
performs 7 receives and 7 additions.

■ In the second example, the master core
performs 3 receives and 3 additions.

■ The improvement is more than a factor of 2!

Copyright © 2010, Elsevier Inc. All rights Reserved

29

Analysis (cont.)

■ The difference is more dramatic with a
larger number of cores.

■ If we have 1000 cores:
■ The first example would require the master to

perform 999 receives and 999 additions.
■ The second example would only require 10

receives and 10 additions.

■ That’s an improvement of almost a factor
of 100!

Copyright © 2010, Elsevier Inc. All rights Reserved

30

How do we write parallel
programs?

■ Task parallelism
■ Partition various tasks carried out solving the

problem among the cores.

■ Data parallelism
■ Partition the data used in solving the problem

among the cores.
■ Each core carries out similar operations on it’s

part of the data.

Copyright © 2010, Elsevier Inc. All rights Reserved

31

Professor P

Copyright © 2010, Elsevier Inc. All rights Reserved

15 questions
300 exams

32

Professor P’s grading assistants

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1 TA#2 TA#3

33

Division of work –
data parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

34

Division of work –
task parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

35

Division of work –
data parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

36

Division of work –
task parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks
1)Receiving
2)Addition

37

Coordination
■ Cores usually need to coordinate their work.
■ Communication – one or more cores send

their current partial sums to another core.
■ Load balancing – share the work evenly

among the cores so that one is not heavily
loaded.

■ Synchronization – because each core works
at its own pace, make sure cores do not get
too far ahead of the rest.

Copyright © 2010, Elsevier Inc. All rights Reserved

38

What we’ll be doing

■ Learning to write programs that are
explicitly parallel.

■ Using the C language.
■ Using three different extensions to C.

■ Message-Passing Interface (MPI)
■ Posix Threads (Pthreads)
■ OpenMP

Copyright © 2010, Elsevier Inc. All rights Reserved

39

Type of parallel systems

■ Shared-memory
■ The cores can share access to the computer’s

memory.
■ Coordinate the cores by having them examine

and update shared memory locations.
■ Distributed-memory

■ Each core has its own, private memory.
■ The cores must communicate explicitly by

sending messages across a network.

Copyright © 2010, Elsevier Inc. All rights Reserved

40

Type of parallel systems

Copyright © 2010, Elsevier Inc. All rights Reserved

Shared-memory Distributed-memory

41

Terminology

■ Concurrent computing – a program is one
in which multiple tasks can be in progress
at any instant.

■ Parallel computing – a program is one in
which multiple tasks cooperate closely to
solve a problem

■ Distributed computing – a program may
need to cooperate with other programs to
solve a problem.

Copyright © 2010, Elsevier Inc. All rights Reserved

42

Concluding Remarks (1)

■ The laws of physics have brought us to the
doorstep of multicore technology.

■ Serial programs typically don’t benefit from
multiple cores.

■ Automatic parallel program generation
from serial program code isn’t the most
efficient approach to get high performance
from multicore computers.

Copyright © 2010, Elsevier Inc. All rights Reserved

43

Concluding Remarks (2)

■ Learning to write parallel programs
involves learning how to coordinate the
cores.

■ Parallel programs are usually very
complex and therefore, require sound
program techniques and development.

Copyright © 2010, Elsevier Inc. All rights Reserved

