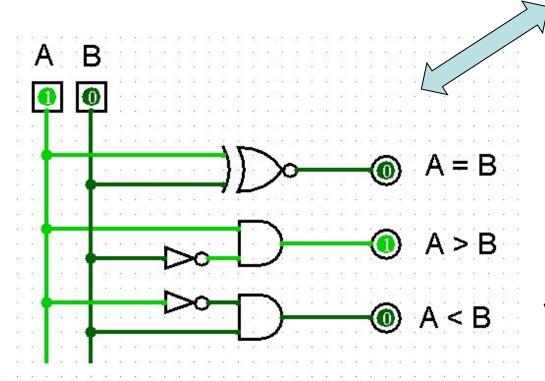


Тема 12: Компараторы

Одноразрядный компаратор



A	В	A=B	A>B	A <b< th=""></b<>		
0	0	1	0	0		
0	1	0	0	1		
1	0	0	1	0		
1	1	1	0	0		

Создадим свое УГО:

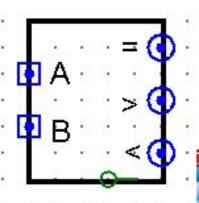


Таблица истинности одноразрядного компаратора с учетом входящих результатов сравнения старших разрядов

A(i+1)=	A(i+1)>	A(i+1)<	A(i)	B(i)	A=B	A>B	A <b< th=""></b<>
B(i+1)	B(i+1)	B(i+1)					
1	0	0	0	0	1	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	1	0
1	0	0	1	1	1	0	0
0	1	0	X	X	0	1	0
0	0	1	X	X	0	0	1

Признак равенства двух разрядов

$$r_i = a_i b_i + \overline{a}_i \overline{b}_i = \overline{a_i \overline{b}_i + \overline{a}_i b}_i = \overline{a_i \oplus b_i}$$

Признак равенства многих разрядов

$$R = r_{n-1}r_{n-2}\dots r_0$$

Признак «больше» для двухразрядных чисел

$$F_{A \triangleright B} = a_1 \overline{b_1} + a_0 \overline{b_0} r_1,$$

Признак «больше» для многоразрядных чисел

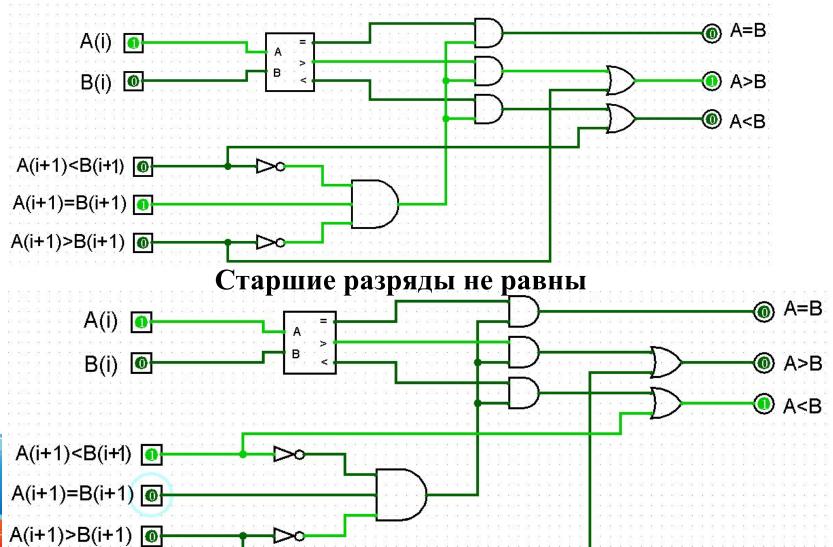
$$F_{\mathbf{A} - \mathbf{B}} = a_{\mathbf{n} - 1} \bar{b}_{\mathbf{n} - 1} + a_{\mathbf{n} - 2} \bar{b}_{\mathbf{n} - 2} \ r_{\mathbf{n} - 1} + a_{\mathbf{n} - 3} \bar{b}_{\mathbf{n} - 3} \ r_{\mathbf{n} - 2} r_{\mathbf{n} - 1} + \dots \\ a_0 \bar{b}_0 z_1 \dots z_{\mathbf{n} - 1} + \dots \\ a_0 \bar{b}_0 z_1$$

ACPUM

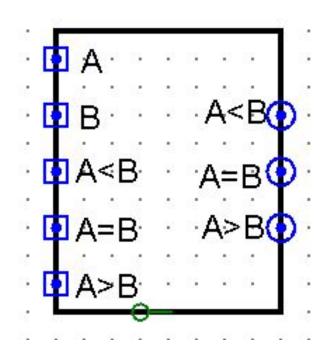
Логические основы ВТ

Одноразрядный компаратор с входящими переносами от старшего разряда

Старшие разряды равны



Создадим УГО для предыдущей схемы



Мирэа 7

Логические основы ВТ

Последовательное наращивание одноразрядных компараторов.

Последовательный 4-х разрядный компаратор

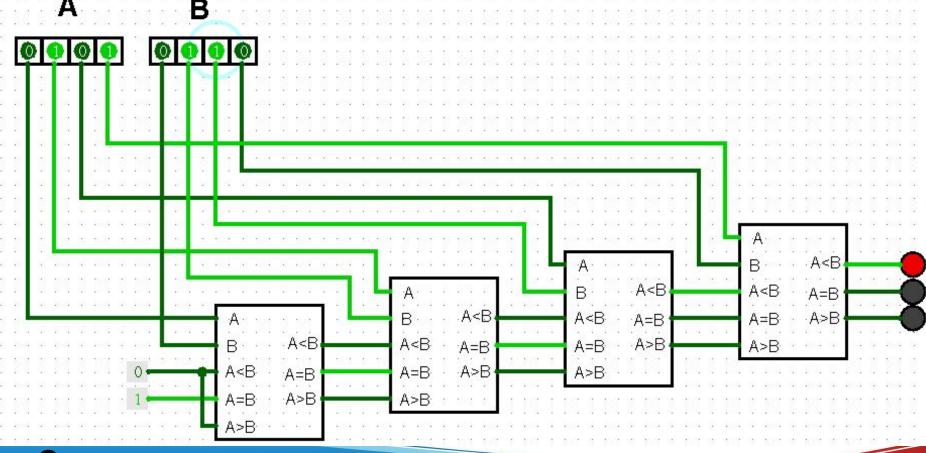
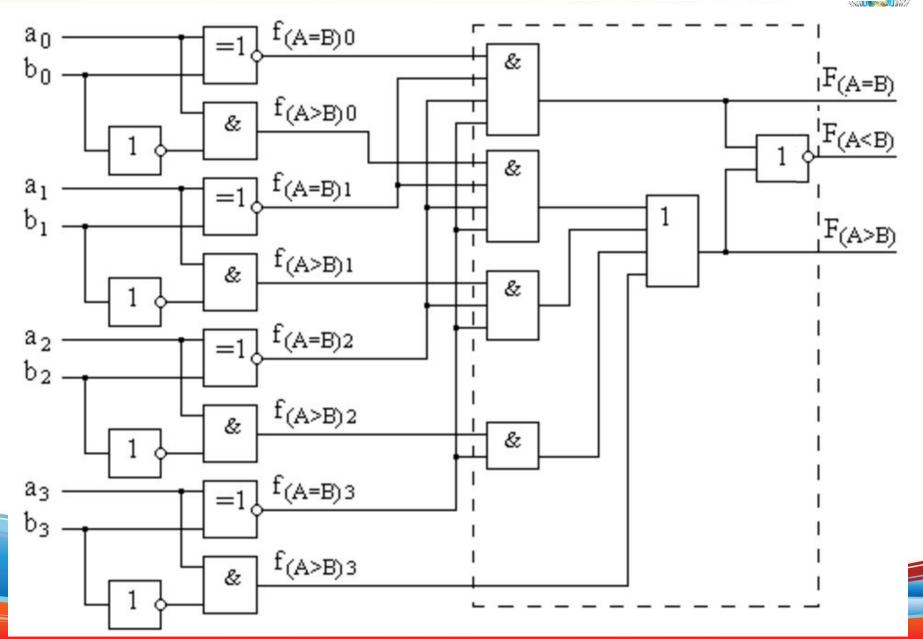


Схема медленная, если разрядов много

Параллельный 4-х разрядный компаратор



Параллельный 4-х разрядный компаратор

