Lecture 3

International Economics

Theory and Policy
TENTH EDITION

Specific Factors and Income Distribution

Paul R. Krugman • Maurice Obstfeld • Marc J. Melitz

Chapter Organization

- Introduction
- The Specific Factors Model
- International Trade in the Specific Factors Model
- Income Distribution and the Gains from Trade
- Political Economy of Trade: A Preliminary View
- International Labor Mobility
- Summary

Introduction

- If trade is so good for the economy, why is there such opposition?
- Two main reasons why international trade has strong effects on the distribution of income within a country:
- Resources cannot move immediately or costlessly from one industry to another.
- Industries differ in the factors of production they demand.

The Specific Factors Model

- The specific factors model allows trade to affect income distribution.
- Assumptions of the model:
- Two goods, cloth and food.
- Three factors of production: labor (L), capital (K) and land (T for terrain).
- Perfect competition prevails in all markets.

The Specific Factors Model (cont.)

- Cloth produced using capital and labor (but not land).
- Food produced using land and labor (but not capital).
- Labor is a mobile factor that can move between sectors.
- Land and capital are both specific factors used only in the production of one good.

The Specific Factors Model (cont.)

- How much of each good does the economy produce?
- The production function for cloth gives the quantity of cloth that can be produced given any input of capital and labor:

$$
Q_{C}=Q_{C}\left(K, L_{C}\right)
$$

- Q_{C} is the output of cloth
- K is the capital stock
- L_{C} is the labor force employed in cloth

The Specific Factors Model (cont.)

- The production function for food gives the quantity of food that can be produced given any input of land and labor:
$Q_{F}=Q_{F}\left(T, L_{F}\right)$
(4-2)
- Q_{F} is the output of food
- T is the supply of land
- L_{F} is the labor force employed in food

Production Possibilities

- How does the economy's mix of output change as labor is shifted from one sector to the other?
- When labor moves from food to cloth, food production falls while output of cloth rises.
- Figure 4-1 illustrates the production function for cloth.

Fig. 4-1: The Production Function for Cloth

Production Possibilities (cont.)

- The shape of the production function reflects the law of diminishing marginal returns.
- Adding one worker to the production process (without increasing the amount of capital) means that each worker has less capital to work with.
- Therefore, each additional unit of labor adds less output than the last.
- Figure 4-2 shows the marginal product of labor, which is the increase in output that corresponds to an extra unit of labor.

Fig. 4-2: The Marginal Product of Labor

Production Possibilities (cont.)

- For the economy as a whole, the total labor employed in cloth and food must equal the total labor supply:

$$
\begin{equation*}
L_{C}+L_{F}=L \tag{4-3}
\end{equation*}
$$

- Use these equations to derive the production possibilities frontier of the economy.

Production Possibilities (cont.)

- Use a four-quadrant diagram to construct production possibilities frontier in Figure 4-3.
- Lower left quadrant indicates the allocation of labor.
- Lower right quadrant shows the production function for cloth from Figure 4-1.
- Upper left quadrant shows the corresponding production function for food.
- Upper right quadrant indicates the combinations of cloth and food that can be produced.

Fig. 4-3: The Production Possibility Frontier in the Specific Factors Model

Production Possibilities (cont.)

- Why is the production possibilities frontier curved?
- Diminishing returns to labor in each sector cause the opportunity cost to rise when an economy produces more of a good.
- Opportunity cost of cloth in terms of food is the slope of the production possibilities frontier - the slope becomes steeper as an economy produces more cloth.

Production Possibilities (cont.)

- Opportunity cost of producing one more yard of cloth is $M P L_{F} / M P L_{C}$ pounds of food.
- To produce one more yard of cloth, you need $1 / M P L_{C}$ hours of labor.
- To free up one hour of labor, you must reduce output of food by $M P L_{F}$ pounds.
- To produce less food and more cloth, employ less in food and more in cloth.
- The marginal product of labor in food rises and the marginal product of labor in cloth falls, so $M P L_{P} / M P L_{C}$ rises.

Prices, Wages, and Labor Allocation

- How much labor is employed in each sector?
- Need to look at supply and demand in the labor market.
- Demand for labor:
- In each sector, employers will maximize profits by demanding labor up to the point where the value produced by an additional hour equals the marginal cost of employing a worker for that hour.

Prices, Wages, and Labor Allocation (cont.)

- The demand curve for labor in the cloth sector:

$$
M P L_{C} \times P_{C}=w \quad(4-4)
$$

- The wage equals the value of the marginal product of labor in manufacturing.
- The demand curve for labor in the food sector:

$$
M P L_{F} \times P_{F}=w \quad(4-5)
$$

- The wage equals the value of the marginal product of labor in food.

Prices, Wages, and Labor Allocation (cont.)

- Figure 4-4 represents labor demand in the two sectors.
- The demand for labor in the cloth sector is $M P L_{C}$ from Figure 4-2 multiplied by P_{C}.
- The demand for labor in the food sector is measured from the right.
- The horizontal axis represents the total labor supply L.

Prices, Wages, and Labor Allocation (cont.)

- The two sectors must pay the same wage because labor can move between sectors.
- If the wage were higher in the cloth sector, workers would move from making food to making cloth until the wages become equal.
- Or if the wage were higher in the food sector, workers would move in the other direction.
- Where the labor demand curves intersect gives the equilibrium wage and allocation of labor between the two sectors.

Fig. 4-4: The Allocation of Labor

Value of labor's
marginal product, wage rate

Prices, Wages, and Labor Allocation (cont.)

- At the production point, the production possibility frontier must be tangent to a line whose slope is minus the price of cloth divided by that of food.
- Relationship between relative prices and output:

$$
-M P L_{F} / M P L_{C}=-P_{C} / P_{F} \quad(4-6)
$$

Fig. 4-5: Production in the Specific Factors Model

Prices, Wages, and Labor Allocation (cont.)

- What happens to the allocation of labor and the distribution of income when the prices of food and cloth change?
- Two cases:

1. An equal proportional change in prices
2. A change in relative prices

Prices, Wages, and Labor Allocation (cont.)

- When both prices change in the same proportion, no real changes occur.
- The wage rate (w) rises in the same proportion as the prices, so real wages (i.e., the ratios of the wage rate to the prices of goods) are unaffected.
- The real incomes of capital owners and landowners also remain the same.

Fig. 4-6: An Equal-Proportional Increase in the Prices of Cloth and Food

Prices, Wages, and Labor Allocation (cont.)

- When only P_{C} rises, labor shifts from the food sector to the cloth sector and the output of cloth rises while that of food falls.
- The wage rate (w) does not rise as much as P_{C} since cloth employment increases and thus the marginal product of labor in that sector falls.

Fig. 4-7: A Rise in the Price of (i) Cloth

Fig. 4-8: The Response of Output to a Change in the Relative Price of Cloth

Fig. 4-9: Determination of Relative Prices

Prices, Wages, and Labor Allocation (cont.)

- Relative Prices and the Distribution of Income
- Suppose that P_{C} increases by 10%. Then, the wage would rise by less than 10%.
- What is the economic effect of this price increase on the incomes of the following three groups?
- Workers, owners of capital, and owners of land

Prices, Wages, and Labor Allocation (cont.)

- Owners of capital are definitely better off.
- Landowners are definitely worse off.
- Workers: cannot say whether workers are better or worse off:
- Depends on the relative importance of cloth and food in workers' consumption.

International Trade in the Specific Factors Model

- Trade and Relative Prices
- The relative price of cloth prior to trade is determined by the intersection of the economy's relative supply of cloth and its relative demand.
- Free trade relative price of cloth is determined by the intersection of world relative supply of cloth and world relative demand.
- Opening up to trade increases the relative price of cloth in an economy whose relative supply of cloth is larger than for the world as a whole.

Fig. 4-10: Trade and Relative Prices

International Trade in the Specific Factors Model (cont.)

Gains from trade

- Without trade, the economy's output of a good must equal its consumption.
- International trade allows the mix of cloth and food consumed to differ from the mix produced.
- The country cannot spend more than it earns:

$$
P_{C} \times D_{C}+P_{F} \times D_{F}=P_{C} \times Q_{C}+P_{F} \times Q_{F}
$$

International Trade in the Specific Factors Model (cont.)

The economy as a whole gains from trade.

- It imports an amount of food equal to the relative price of cloth times the amount of cloth exported:

$$
D_{F}-Q_{F}=\left(P_{C} / P_{F}\right) \times\left(Q_{C}-D_{C}\right)
$$

- It is able to afford amounts of cloth and food that the country is not able to produce itself.
- The budget constraint with trade lies above the production possibilities frontier in Figure 4-11.

Fig. 4-11: Budget Constraint for a Trading Economy and Gains from Trade

Consumption of food, D_{F}
Output of food, Q_{F}

