

International Economics Theory and Policy

TENTH EDITION

Paul R. Krugman • Maurice Obstfeld • Marc J. Melitz

Lecture 3

Specific Factors and Income Distribution

Chapter Organization

- Introduction
- The Specific Factors Model
- International Trade in the Specific Factors Model
- Income Distribution and the Gains from Trade
- Political Economy of Trade: A Preliminary View
- International Labor Mobility
- Summary

Introduction

- If trade is so good for the economy, why is there such opposition?
- Two main reasons why international trade has strong effects on the distribution of income within a country:
 - Resources cannot move immediately or costlessly from one industry to another.
 - Industries differ in the factors of production they demand.

The Specific Factors Model

- The specific factors model allows trade to affect income distribution.
- Assumptions of the model:
 - Two goods, cloth and food.
 - Three factors of production: labor (L), capital
 (K) and land (T for terrain).
 - Perfect competition prevails in all markets.

The Specific Factors Model (cont.)

- Cloth produced using capital and labor (but not land).
- Food produced using land and labor (but not capital).
- Labor is a mobile factor that can move between sectors.
- Land and capital are both specific factors used only in the production of one good.

The Specific Factors Model (cont.)

- How much of each good does the economy produce?
- The production function for cloth gives the quantity of cloth that can be produced given any input of capital and labor:

$$Q_C = Q_C(K, L_C) \tag{4-1}$$

- $-Q_C$ is the output of cloth
- K is the capital stock
- $-L_C$ is the labor force employed in cloth

The Specific Factors Model (cont.)

 The production function for food gives the quantity of food that can be produced given any input of land and labor:

$$Q_F = Q_F(T, L_F) \tag{4-2}$$

- $-Q_F$ is the output of food
- T is the supply of land
- $-L_F$ is the labor force employed in food

Production Possibilities

- How does the economy's mix of output change as labor is shifted from one sector to the other?
- When labor moves from food to cloth, food production falls while output of cloth rises.
- Figure 4-1 illustrates the production function for cloth.

Fig. 4-1: The Production Function for Cloth

Production Possibilities (cont.)

- The shape of the production function reflects the law of diminishing marginal returns.
 - Adding one worker to the production process (without increasing the amount of capital) means that each worker has less capital to work with.
 - Therefore, each additional unit of labor adds less output than the last.
- Figure 4-2 shows the **marginal product of labor**, which is the increase in output that corresponds to an extra unit of labor.

Fig. 4-2: The Marginal Product of Labor

Production Possibilities (cont.)

 For the economy as a whole, the total labor employed in cloth and food must equal the total labor supply:

$$L_C + L_F = L \tag{4-3}$$

 Use these equations to derive the production possibilities frontier of the economy.

Production Possibilities (cont.)

- Use a four-quadrant diagram to construct production possibilities frontier in Figure 4-3.
 - Lower left quadrant indicates the allocation of labor.
 - Lower right quadrant shows the production function for cloth from Figure 4-1.
 - Upper left quadrant shows the corresponding production function for food.
 - Upper right quadrant indicates the combinations of cloth and food that can be produced.

Fig. 4-3: The Production Possibility Frontier in the Specific Factors Model

Production Possibilities (cont.)

- Why is the production possibilities frontier curved?
 - Diminishing returns to labor in each sector cause the opportunity cost to rise when an economy produces more of a good.
 - Opportunity cost of cloth in terms of food is the slope of the production possibilities frontier – the slope becomes steeper as an economy produces more cloth.

Production Possibilities (cont.)

- Opportunity cost of producing one more yard of cloth is MPL_F/MPL_C pounds of food.
 - To produce one more yard of cloth, you need $1/MPL_{\rm C}$ hours of labor.
 - To free up one hour of labor, you must reduce output of food by MPL_F pounds.
 - To produce less food and more cloth, employ less in food and more in cloth.
 - The marginal product of labor in food rises and the marginal product of labor in cloth falls, so MPL_F/MPL_C rises.

Prices, Wages, and Labor Allocation

- How much labor is employed in each sector?
 - Need to look at supply and demand in the labor market.
- Demand for labor:
 - In each sector, employers will maximize profits by demanding labor up to the point where the value produced by an additional hour equals the marginal cost of employing a worker for that hour.

 The demand curve for labor in the cloth sector:

$$MPL_C \times P_C = W \qquad (4-4)$$

- The wage equals the value of the marginal product of labor in manufacturing.
- The demand curve for labor in the food sector:

$$MPL_F \times P_F = w$$
 (4-5)

 The wage equals the value of the marginal product of labor in food.

- Figure 4-4 represents labor demand in the two sectors.
- The demand for labor in the cloth sector is MPL_C from Figure 4-2 multiplied by P_C .
- The demand for labor in the food sector is measured from the right.
- The horizontal axis represents the total labor supply L.

- The two sectors must pay the same wage because labor can move between sectors.
- If the wage were higher in the cloth sector, workers would move from making food to making cloth until the wages become equal.
 - Or if the wage were higher in the food sector, workers would move in the other direction.
- Where the labor demand curves intersect gives the equilibrium wage and allocation of labor between the two sectors.

Fig. 4-4: The Allocation of Labor

- At the production point, the production possibility frontier must be tangent to a line whose slope is minus the price of cloth divided by that of food.
- Relationship between relative prices and output:

$$-MPL_F/MPL_C = -P_C/P_F \quad (4-6)$$

Fig. 4-5: Production in the Specific Factors Model

- What happens to the allocation of labor and the distribution of income when the prices of food and cloth change?
- Two cases:
 - 1. An equal proportional change in prices
 - 2. A change in relative prices

- When both prices change in the same proportion, no real changes occur.
 - The wage rate (w) rises in the same proportion as the prices, so real wages (i.e., the ratios of the wage rate to the prices of goods) are unaffected.
 - The real incomes of capital owners and landowners also remain the same.

Fig. 4-6: An Equal-Proportional Increase in the Prices of Cloth and Food

- When only P_c rises, labor shifts from the food sector to the cloth sector and the output of cloth rises while that of food falls.
- The wage rate (w) does not rise as much as P_C since cloth employment increases and thus the marginal product of labor in that sector falls.

Fig. 4-7: A Rise in the Price of Cloth

Fig. 4-8: The Response of Output to a Change in the Relative Price of Cloth

Fig. 4-9: Determination of Relative Prices

- Relative Prices and the Distribution of Income
 - Suppose that P_c increases by 10%. Then, the wage would rise by less than 10%.
- What is the economic effect of this price increase on the incomes of the following three groups?
 - Workers, owners of capital, and owners of land

- Owners of capital are definitely better off.
- Landowners are definitely worse off.
- Workers: cannot say whether workers are better or worse off:
 - Depends on the relative importance of cloth and food in workers' consumption.

International Trade in the Specific Factors Model

- Trade and Relative Prices
 - The relative price of cloth prior to trade is determined by the intersection of the economy's relative supply of cloth and its relative demand.
 - Free trade relative price of cloth is determined by the intersection of world relative supply of cloth and world relative demand.
 - Opening up to trade increases the relative price of cloth in an economy whose relative supply of cloth is larger than for the world as a whole.

Fig. 4-10: Trade and Relative Prices

International Trade in the Specific Factors Model (cont.)

- Gains from trade
 - Without trade, the economy's output of a good must equal its consumption.
 - International trade allows the mix of cloth and food consumed to differ from the mix produced.
 - The country cannot spend more than it earns:

$$P_C \times D_C + P_F \times D_F = P_C \times Q_C + P_F \times Q_F$$

International Trade in the Specific Factors Model (cont.)

- The economy as a whole gains from trade.
 - It imports an amount of food equal to the relative price of cloth times the amount of cloth exported:

$$D_F - Q_F = (P_C / P_F) \times (Q_C - D_C)$$

- It is able to afford amounts of cloth and food that the country is not able to produce itself.
- The budget constraint with trade lies above the production possibilities frontier in Figure 4-11.

Fig. 4-11: Budget Constraint for a Trading Economy and Gains from Trade

