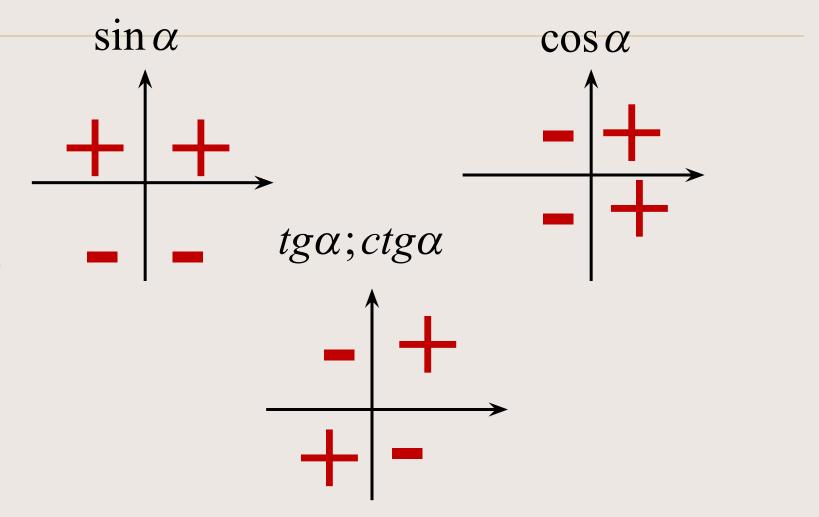
ФОРМУЛЫ ПРИВЕДЕНИЯ

Упростим выражение

$$\sin\left(\frac{\pi}{2}-x\right)+\cos\left(-\pi-x\right)+tg\left(\frac{3\pi}{2}+x\right)+ctg\left(2\pi+x\right)$$

$$\cos\left(\frac{\pi}{2} + x\right) + \sin\left(3\pi + x\right)$$

Вспомним знаки тригонометрических функций по четвертям.



$$\sin(\alpha \pm \beta) = \sin\alpha \cdot \cos\beta \pm \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta \mp \sin\alpha \cdot \sin\beta$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

$$ctg(\alpha \pm \beta) = \frac{-1 \pm ctg\alpha \cdot ctg\beta}{ctg\alpha \pm ctg\beta}$$

$$\sin(\pi - x) = \sin x$$

$$\cos(\pi + x) = -\cos x$$

$$\tan(2\pi t g x) = -$$

$$\sin(3\pi + x) = -\sin x$$

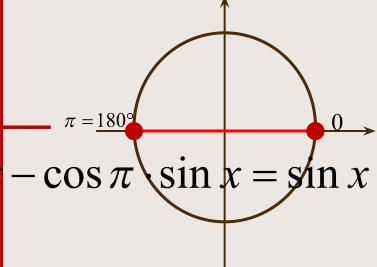
$$\sin(\pi - x) = \sin \pi \cdot \cos x$$

$$\cos(3\pi - x) = \sin \pi \cdot \cos x$$

$$\tan(2t g x) = -\cos x$$

$$\tan(2t g x) = -\cos x$$

$$\alpha = \pi n \pm x$$



$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{3\pi}{2} - x\right) = -\sin x$$

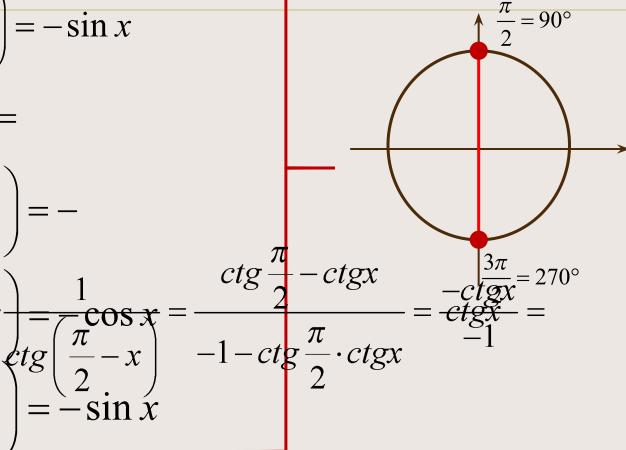
$$tg\left(\frac{\pi}{2}etgx\right) =$$

$$\left(xtg \left(\frac{3\pi}{tgx} \right) \right) = -$$

$$\frac{\sinh\left(\frac{\pi 3\pi}{2}\right)}{2} \Rightarrow \frac{1}{x} = \frac{1}{\cos x} = \frac{1}{\cos x}$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

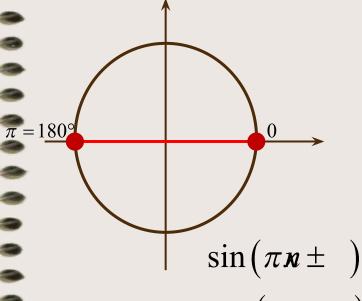
$$\alpha = \frac{\pi n}{2} \pm$$
жечетное



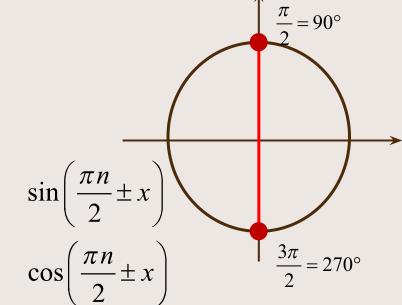
$$\alpha = \frac{\pi n}{2} \pm x$$
, х-угол 1 четверти

$$\alpha = \pi n \pm x$$

$$\alpha = \frac{\pi n}{2} \pm n e^{n} \ddot{e}_{mhoe}$$



$$\cos(\pi n \pm x)$$



Í ПРИЗВЕДЕНИЯ

$$ctg(\pi n \pm x)$$
 $ctg(\frac{\pi n}{2} \pm x)$

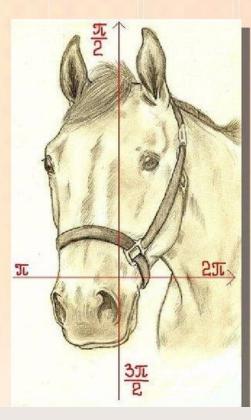
ФОРМУЛЫ ПРИВЕДЕНИЯ

$\cos(\pi+t)=-\cos t$	$\sin(\pi + t) = -\sin t$	$tg(\pi + t) = tg t$	$ctg(\pi + t) = ctg t$
$\cos(\pi-t)=-\cos t$	$\sin(\pi - t) = \sin t$	$tg(\pi - t) = -tg t$	$ctg(\pi - t) = -ctg t$
$\cos(2\pi+t)=\cos t$	$\sin(2\pi+t)=\sin t$	$tg(2\pi+t)=tgt$	$ctg(2\pi + t) = ctg t$
$\cos(2\pi-t)=\cos t$	$\sin(2\pi - t) = -\sin t$	$tg(2\pi - t) = -tg t$	$ctg(2\pi - t) = -ctg t$
$\cos\left(\frac{\pi}{2} + t\right) = -\sin t$	$\sin\left(\frac{\pi}{2} + t\right) = \cos t$	$tg\left(\frac{\pi}{2}+t\right) = -ctg\ t$	$\operatorname{ctg}\left(\frac{\pi}{2}+t\right)=-\operatorname{tg}t$
$\cos\left(\frac{\pi}{2} - t\right) = \sin t$	$\sin\left(\frac{\pi}{2} - t\right) = \cos t$	$tg\left(\frac{\pi}{2}-t\right)=ctg\ t$	$\operatorname{ctg}\left(\frac{\pi}{2}-t\right)=\operatorname{tg}t$
$\cos\left(\frac{3\pi}{2} + t\right) = \sin t$	$\sin\left(\frac{3\pi}{2} + t\right) = -\cos t$	$tg\left(\frac{3\pi}{2} + t\right) = -ctg\ t$	$\operatorname{ctg}\left(\frac{3\pi}{2} + t\right) = -\operatorname{tg} t$
$\cos\left(\frac{3\pi}{2} - t\right) = -\sin t$	$\sin\left(\frac{3\pi}{2} - t\right) = -\cos t$	$tg\left(\frac{3\pi}{2}-t\right)=ctg\ t$	$\operatorname{ctg}\left(\frac{3\pi}{2}-t\right)=\operatorname{tg}t$

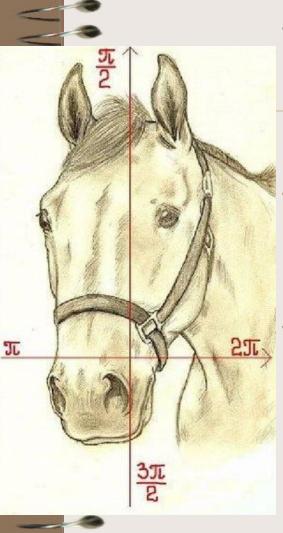
Мнемоническое правило для формул

приведения

Лошадиное правило

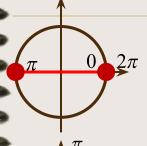


старые добрые времена жил рассеянный математик, который при поиске ответа менять или не менять название функции (синус на косинус), смотрел на свою умную лошадь, а она головой вдоль кивала той координат, которой принадлежала точка, соответствующая первому слагаемому аргумента $\pi/2 + \alpha$ или $\pi + \alpha$. Если лошадь кивала головой вдоль оси ОУ, то математик считал, что получен ответ «да, менять», если вдоль оси ОХ, то «нет, не менять».

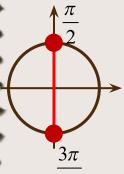


- Итак, "лошадиное правило" звучит так:
- Если мы откладываем угол от вертикальной оси, лошадь говорит "да" (киваем головой вдоль оси ОҮ) и приводимая функция меняет свое название: синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс.
- Если мы откладываем угол от горизонтальной оси, лошадь говорит "нет" (киваем головой вдоль оси ОХ) и приводимая функция не меняет свое название.
- Энак правой части равенства совпадает со знаком приводимой функции, стоящей в левой части равенства.

ФОРМУЛЫ ПРИВЕДЕНИЯ ПРАВИЛО



• 1) Если под тригонометрической функцией аргумент равен $\pi \pm x$; $2\pi \pm x$, то название функции не меняется.



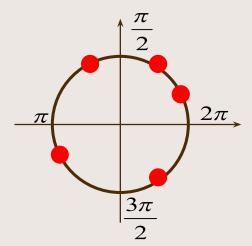
- 2) Если под тригонометрической функцией аргумент равен $\frac{\pi}{2} \pm x; \frac{3\pi}{2} \pm x$, то название функции меняется (на родственное).
- 3) Перед полученной функцией ставят знак, который имела бы в данной четверти исходная функция при условии, что x угол 1 четверти.

Упростим выражение

$$\sin\left(\frac{\pi}{2}-x\right)+\cos\left(+\pi+x\right)+tg\left(\frac{3\pi}{2}+x\right)+ctg\left(2\pi+x\right)$$

$$\cos\left(\frac{\pi}{2} + x\right) + \sin\left(3\pi + x\right)$$

$$\frac{\cos x - \cos x - ctgx + ctgx}{-\sin x - \sin x} = 0$$



Рассмотрим применение формул приведения:

Пример 2:

$$ynpocmume: \frac{2\sin(\alpha-7\pi)+\cos\left(\frac{3\pi}{2}+\alpha\right)}{\sin(\alpha+\pi)}$$

$$Peшeнue: \frac{-2\sin(\pi-\alpha)+\cos\left(\frac{3\pi}{2}+\alpha\right)}{\sin(\pi+\alpha)} = \frac{-2\sin\alpha+\sin\alpha}{-\sin\alpha} = 1$$

Пример 3:

Вычислите: $\sin 160^{\circ} \cdot \cos 110^{\circ} + \sin 250^{\circ} \cdot \cos 340^{\circ} + tg110^{\circ} \cdot tg340^{\circ}$

Решение:
$$\sin(180^{\circ} - 20^{\circ}) \cdot \cos(180^{\circ} - 70) +$$
 $+\sin(270^{\circ} - 20^{\circ}) \cdot \cos(270^{\circ} + 70^{\circ}) +$
 $+tg(90^{\circ} + 20^{\circ}) \cdot tg(360^{\circ} - 20^{\circ}) =$
 $\sin 20^{\circ} \cdot (-\cos 70^{\circ}) + (-\cos 20^{\circ}) \cdot \sin 70^{\circ} +$
 $+(-ctg20^{\circ}) \cdot tg(-20^{\circ}) =$
 $-(\sin 20^{\circ} \cdot \cos 70^{\circ} + \cos 20^{\circ} \cdot \sin 70^{\circ}) + ctg20^{\circ} \cdot tg20^{\circ} =$
 $-\sin(20^{\circ} + 70^{\circ}) + 1 = -1 + 1 = 0$

Пример 3: (2 способ)

Вычислите: $\sin 160^{\circ} \cdot \cos 110^{\circ} + \sin 250^{\circ} \cdot \cos 340^{\circ} + tg110^{\circ} \cdot tg340^{\circ}$

Решение:
$$\sin(180^{\circ} - 20^{\circ}) \cdot \cos(90^{\circ} + 20^{\circ}) +$$
 $+\sin(270^{\circ} - 20^{\circ}) \cdot \cos(360^{\circ} - 20^{\circ}) +$
 $+tg(90^{\circ} + 20^{\circ}) \cdot tg(360^{\circ} - 20^{\circ}) =$
 $\sin 20^{\circ} \cdot (-\sin 20^{\circ}) + (-\cos 20^{\circ}) \cdot \cos 20^{\circ} +$
 $+(-ctg20^{\circ}) \cdot tg(-20^{\circ}) =$
 $-(\sin^{2} 20^{\circ} + \cos^{2} 20^{\circ}) + ctg20^{\circ} \cdot tg20^{\circ} = -1 + 1 = 0$

Пример 4:

$$Bычислите: \frac{5\cos 29^{\circ}}{\sin 61^{\circ}}$$

Решение:
$$\frac{5\cos 29^{\circ}}{\sin (90^{\circ} - 29^{\circ})} = \frac{5\cos 29^{\circ}}{\cos 29^{\circ}} = 5$$

$$Peшeнue: \frac{5\cos(90^{\circ}-61^{\circ})}{\sin 61^{\circ}} = \frac{5\sin 61^{\circ}}{\sin 61^{\circ}} = 5$$

Пример 5:

$$Bычислите: \frac{3\cos 54^{\circ}}{\cos 126^{\circ}}$$

Решение:
$$\frac{3\cos 54^{\circ}}{\cos (180^{\circ} - 54^{\circ})} = \frac{3\cos 54^{\circ}}{-\cos 54^{\circ}} = -3$$

Пример 6:

Вычислите:
$$\frac{12}{\sin^2 37^\circ + \sin^2 127^\circ}$$

$$Peшeнue: \frac{12}{\sin^2 37^\circ + \sin^2 (90^\circ + 37^\circ)} =$$

$$\frac{12}{\sin^2 37^\circ + \cos^2 37^\circ} = 12$$

Пример 7:

$$H$$
айдите: $\cos\left(\frac{7\pi}{2}-\alpha\right)$,

 $ecnu\cos\alpha = -0.8$ $u\frac{\pi}{2} \boxtimes \alpha \boxtimes \pi.$

🤁 Решение :

$$\cos\left(\frac{7\pi}{2} - \alpha\right) = \cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$$

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - 0.64} = \sqrt{0.36} = 0.6$$

$$\cos\left(\frac{7\pi}{2} - \alpha\right) = -0,6$$

Ответ : -0, 6.

№26.6Вычислите :

(a)
$$\cos \frac{5\pi}{3} = \frac{1}{2}$$
 $\cos \frac{5\pi}{3} = \cos \left(2\pi - \frac{\pi}{3}\right) = \cos \frac{\pi}{3} = \frac{1}{2}$

$$6)\sin\left(-\frac{11\pi}{6}\right) = \frac{1}{2} \qquad \sin\left(-\frac{11\pi}{6}\right) = -\sin\left(2\pi - \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$$

$$(6)\sin\frac{7\pi}{6} = -\frac{1}{2}$$

$$(2)\cos\left(-\frac{7\pi}{3}\right) = \frac{1}{2}$$

№26.7Вычислите:

$$(6)\cos 4650^{\circ} = \cos 1050^{\circ} = \cos 330^{\circ} = \cos (-30^{\circ}) = \frac{\sqrt{3}}{2}$$

$$c)ctg4110^{\circ} = ctg510^{\circ} = ctg150^{\circ} = ctg(-30^{\circ}) = -\sqrt{3}$$

$$a)\sin 3090^\circ = -\frac{1}{2}$$

$$6)tg2205^{\circ} = 1$$

№26.8Вычислите :

a)
$$\cos 630^{\circ} - \sin 1470^{\circ} - ctg 1125^{\circ} =$$

$$\cos(-90^{\circ}) - \sin 30^{\circ} - ctg 45^{\circ} = -1,5$$

(6)
$$2\cos\frac{31\pi}{3} + \sin(-7\pi) - tg\frac{7\pi}{4} = 2\cos\frac{\pi}{3} - \sin\pi - tg\left(-\frac{\pi}{4}\right) = 1$$

$$=1+0+1=2$$

$$z)\cos\left(-9\pi\right) + 2\sin\left(-\frac{49\pi}{6}\right) - ctg\left(-\frac{21\pi}{4}\right) = -1 - 1 + 1 = -1$$

№26.14Вычислите:

$$a)\frac{11\cos 287^{\circ} - 25\sin 557^{\circ}}{\sin 17^{\circ}} = \frac{11\cos 287^{\circ} - 25\sin 197^{\circ}}{\sin 17^{\circ}} =$$

$$\frac{11\cos(270^{\circ}+17^{\circ})-25\sin(180^{\circ}+17^{\circ})}{\sin 17^{\circ}} =$$

$$\frac{11\sin 17^{\circ} + 25\sin 17^{\circ}}{\sin 17^{\circ}} = 36$$

№26.14Вычислите:

$$(6)\frac{13\sin 469^{\circ} - 8\cos 341^{\circ}}{\cos 19^{\circ}} = \frac{13\sin 109^{\circ} - 8\cos(-19)}{\cos 19^{\circ}} =$$

$$\frac{13\sin(90^{\circ}+19^{\circ})-8\cos 19^{\circ}}{\cos 19^{\circ}} = \frac{13\cos 19^{\circ}-8\cos 19^{\circ}}{\cos 19^{\circ}} = 5$$

№26.18Вычислите:

$$a) \frac{\cos 105^{\circ} \cdot \cos 5^{\circ} + \sin 105^{\circ} \cdot \cos 85^{\circ}}{\sin 195^{\circ} \cdot \cos 5^{\circ} + \sin 105^{\circ} \cdot \cos (90^{\circ} - 5^{\circ})} = \frac{\cos 105^{\circ} \cdot \cos 5^{\circ} + \sin 105^{\circ} \cdot \cos (90^{\circ} - 5^{\circ})}{\sin 195^{\circ} \cdot \cos 5^{\circ} + \cos 195^{\circ} \cdot \sin (180^{\circ} + 5^{\circ})} = \frac{\cos 105^{\circ} \cdot \cos 5^{\circ} + \sin 105^{\circ} \cdot \sin 5^{\circ}}{\sin 195^{\circ} \cdot \cos 5^{\circ} - \cos 195^{\circ} \cdot \sin 5^{\circ}} = \frac{\cos (105^{\circ} - 5^{\circ})}{\sin (195^{\circ} - 5^{\circ})} = \frac{\cos 100^{\circ}}{\sin 190^{\circ}} = \frac{\cos (90^{\circ} + 10^{\circ})}{\sin (180^{\circ} + 10^{\circ})} = \frac{-\sin 10^{\circ}}{-\sin 10^{\circ}} = 1$$

№26.18Вычислите:

$$\frac{\sin 75^{\circ} \cdot \cos 5^{\circ} - \cos 75^{\circ} \cdot \cos 85^{\circ}}{\cos 375^{\circ} \cdot \cos 5^{\circ} - \sin 15^{\circ} \cdot \sin 365^{\circ}} = \frac{\sin 75^{\circ} \cdot \cos 5^{\circ} - \cos 75^{\circ} \cdot \cos (90^{\circ} - 5^{\circ})}{\cos 15^{\circ} \cdot \cos 5^{\circ} - \sin 15^{\circ} \cdot \sin 5^{\circ}} = \frac{\sin 75^{\circ} \cdot \cos 5^{\circ} - \sin 15^{\circ} \cdot \sin 5^{\circ}}{\cos 15^{\circ} \cdot \cos 5^{\circ} - \sin 15^{\circ} \cdot \sin 5^{\circ}} = \frac{\sin (75^{\circ} - 5^{\circ})}{\cos (15^{\circ} + 5^{\circ})} = \frac{\sin 70^{\circ}}{\cos 20^{\circ}} = \frac{\cos 20^{\circ}}{\cos 20^{\circ}} = 1$$

Самостоятельно выполнить задание:

Вариант1: 26.9(a), 26.10(a), 26.11(a), 26.13(a), 26.16(a), 26.17(a), 26.19(a)

Вариант2: 26.9(б), 26.10(б), 26.11(б), 26.13(б), 26.16(б), 26.17(б), 26.19(б)

СПАСИБО ЗА ВНИМАНИЕ.