Министерство образования и науки Российской Федерации Московский государственный технический университет им. Н.Э. Баумана Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Разработка алгоритмов обнаружения дыма и огня

Студент: Фамилия И.О.

Научный руководитель: Фамилия И.О.

Москва, 2022 год

Актуальность задачи

- Увеличение интенсивности и количества лесных пожаров (уничтожение леса, жертвы среди населения)
- Низкая эффективность традиционных методов
- Поиск баланса между производительностью и сложностью модели глубокого обучения
- Снижение временных затрат и объема используемой памяти

Цели и задачи работы

Цель: сравнительный анализ существующих методов и создание новой модели распознавания дыма и огня, позволяющей превзойти по точности и затратам памяти существующие модели.

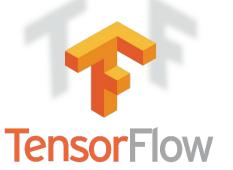
Задачи:

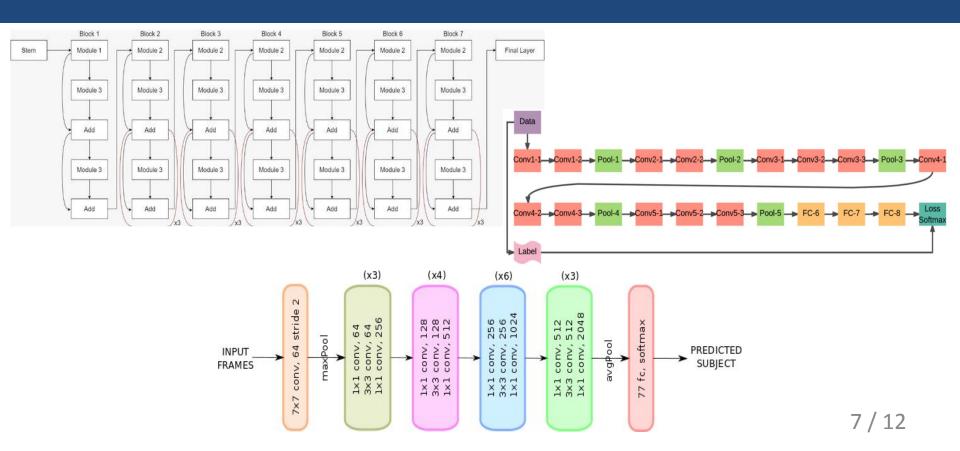
- 1. Изучить предшествующие достижения и проанализировать используемый набор данных;
- 2. Провести исследование методов глубокого обучения, предназначенных для реализации;
- 3. Выполнить сравнительный анализ методов построить, обучить и протестировать модели нейронных сетей, выполнив программную реализацию;
- 4. Предложить и программно реализовать новый метод распознавания признаков пожара на основе глубокого обучения, позволяющий превзойти по точности распознавания и затратам памяти существующие модели.

Постановка задачи

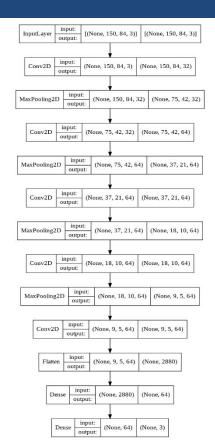
Метки: Fire (огонь), Neutral (нет дыма и / или огня), Smoke

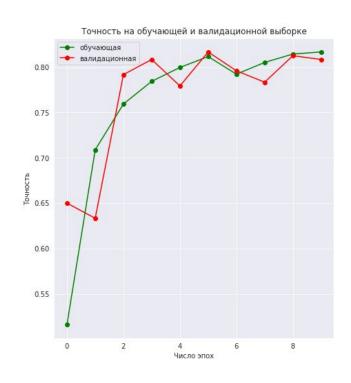
Используемые инструменты

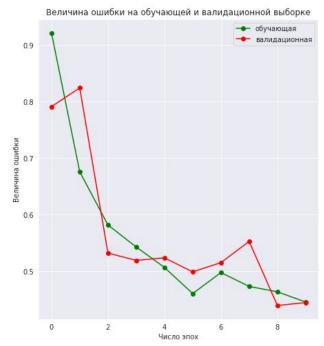


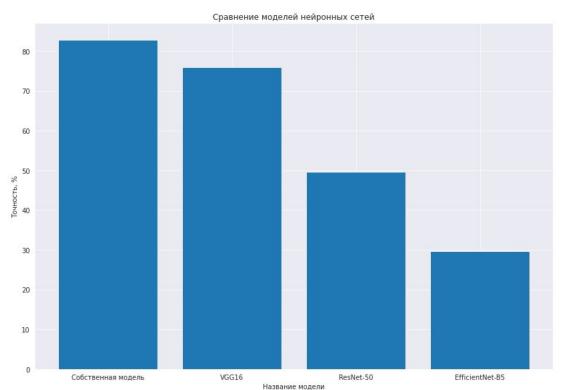


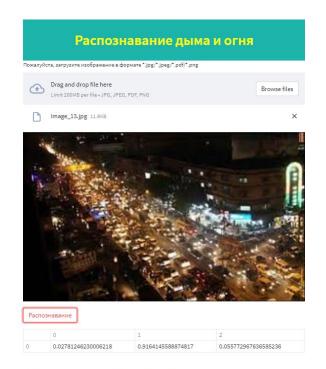
Распознавание дыма и огня




Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	0.790	0.945	22,910,480	126	109.42	8.06
VGG16	528	0.713	0.901	138,357,544	23	69.50	4.16
VGG19	549	0.713	0.900	143,667,240	26	84.75	4.38
ResNet50	98	0.749	0.921	25,636,712	-	58.20	4.55
ResNet101	171	0.764	0.928	44,707,176	-	89.59	5.19
ResNet152	232	0.766	0.931	60,419,944	-	127.43	6.54
ResNet50V2	98	0.760	0.930	25,613,800	2	45.63	4.42
ResNet101V2	171	0.772	0.938	44,675,560	-	72.73	5.43
ResNet152V2	232	0.780	0.942	60,380,648	-	107.50	6.64
InceptionV3	92	0.779	0.937	23,851,784	159	42.25	6.86
InceptionResNetV2	215	0.803	0.953	55,873,736	572	130.19	10.02
MobileNet	16	0.704	0.895	4,253,864	88	22.60	3.44
MobileNetV2	14	0.713	0.901	3,538,984	88	25.90	3.83
DenseNet121	33	0.750	0.923	8,062,504	121	77.14	5.38
DenseNet169	57	0.762	0.932	14,307,880	169	96.40	6.28
DenseNet201	80	0.773	0.936	20,242,984	201	127.24	6.67
NASNetMobile	23	0.744	0.919	5,326,716	-	27.04	6.70
NASNetLarge	343	0.825	0.960	88,949,818	2	344.51	19.96
EfficientNetB0	29	-	-	5,330,571	-	46.00	4.91
EfficientNetB1	31	-	-	7,856,239		60.20	5.55
EfficientNetB2	36	-	-	9,177,569	-	80.79	6.50
EfficientNetB3	48	-	0	12,320,535	-	139.97	8.77
EfficientNetB4	75			19,466,823	-	308.33	15.12
EfficientNetB5	118	-	-	30,562,527	-	579.18	25.29
EfficientNetB6	166	_		43,265,143	2	958.12	40.45
EfficientNetB7	256	-	-	66,658,687	-	1578.90	61.62


EfficientNet, ResNet, VGG16


Предложенная модель



Сравнительный анализ моделей

Название модели глубокого обучения	accuracy, %	loss
EfficientNet-B5	29,6	1,16
ResNet-50	49,6	1,03
VGG16	75,9	0,59
Предложенная модель	82,8	0,42

Тестирование на изображениях

Результат: Neutral Результат: Smoke

Результат: Fire

Тестирование на видеозаписи

Полученные результаты

- Построены и протестированы модели EfficientNet-B5, ResNet-50 и VGG16
- Точность VGG16 76%; использует 50 Мб памяти
- Предложена модель сверточной нейронной сети с точностью 83%; использует не более 4 Мб памяти