BASIC CONCEPTS IN EPIDEMIOLOGY

Dr.Moneer Ali Abdallah MBBS, MPH, PDHM,DRME, MD

OUTLINE OF THE LECTURE

- Models of disease causation
- Epidemiologic triad concept
- The natural history of disease
- Chain of transmission
- The iceberg phenomena
- Herd immunity

• What is the disease ?

What is the definition of the disease ?

- A satisfactory definition of disease is yet to be found
- Dictionary defines disease as:
 a condition in which health is impaired or
 a departure from a state of health....
- Definition of the health:
- Is state of well being in which all the components of health are in balance

Concept of disease causation

- Supernatural theory of disease
- Germ theory of disease
- Ecological theory
- Multifactorial causation

Supernatural theory :

In the early past, the disease was thought mainly due to either the curse of god or due to the evil force of the demons

Germ theory: Microbes (germs) were found to be the cause for many known diseases.

Ecological theory

Around 463 BC, Hippocrates is the first epidemiologist who advised to search the environment for the cause of the disease

Multifactorial theory

Pettenkoffer

Stated that agent, host and environmental factors will act and interact synergistically causing the disease

EPIDEMIOLOGICAL TRIANGLE

 Changes in one of the elements of the triangle can influence the occurrence of disease

Epidemiologic Triad Concepts

The traditional model of disease causation

3 components

- ✓ an external agent
- a susceptible host
- an environment

Epidemiologic Triad - Agent

Agent

 Entity necessary to cause disease in a susceptible host

Examples

- Biological (bacteria, virus, parasites, etc)
- Physical (radiation, physical force)
- Chemical (pollutants, drugs, etc)
- Nutrients (nutritional deficiency)

Epidemiologic Triad - Agent

- Infectivity ability to invade a host
- **Pathogenicity** ability to cause disease
- Virulence ability to cause severe disease or death

Epidemiologic Triad - Host

• Infectivity, Pathogenicity, Virulence

all are dependent upon the condition of the host

- □ immunity (active, passive)
- □ nutrition
- □ adequate rest & sleep
- □ good hygienic practices

Epidemiologic Triad - Host

<u>Definition</u>: person/organism that is susceptible to effect of agent

Characteristics

- Genetic
- specific immunity
- socio-demographic
 - age
 - sex
 - ethnicity
 - occupation
 - social class

Epidemiologic Triad - Environment

<u>Definition</u> : Conditions that influence interaction between agent & host

Examples

- Biological
- physical (+ climate) & physical surroundings
- social (+ socioeconomic conditions)

Epidemiologic Triad - Environment

> War Poor housing & Poor Sanitation Poverty Floods Earthquakes Cyclones Adverse climate

Pathogen's ability to survive outside host?

Transmission from Host to Host

Natural History of Disease

- The progress or course of disease in an individual over time without any external inversion.
- It has 3 stages :

Natural History of Disease

CholeraDengue fever

Natural History of Disease

1. Stage of susceptibility (before onset of disease)

age, sex, occupation, family history,Weight (obesity), smoking2. Stage of exposure to the agent

3. Stage of subclinical disease

etiologic agent present in the body but has not caused any visible symptoms or signs of disease.

4. Stage of clinical

5. Recovery or death

Incubation Period

- Interval between time of contact and/or entry of agent and onset of illness
- Time required for microorganism to multiply within the host up to a threshold where the microorganism population is large enough to produce symptoms and/or signs of disease

Dynamics of Disease Transmission

<u>Transmissible</u>

- Infectious diseases
- Genetic diseases

Non-Transmissible

 Many chronic diseases, eg : diabetes and cancer,

Mode of Transmission

- <u>Definition</u>: mechanism through which infective agent move from reservoir to susceptible host
 - Direct
 - Indirect

RESERVOIRS OF INFECTION

<u>Definition:</u>

habitats where infective agent can survive & (multiply).

- <u>Animals</u>: zoonoses (animal □ human)
- <u>Environment</u> : plants, soil, water
- <u>Human</u>: case (person having disease)

Chain Of Transmission

Mode of Transmission

I. Direct:

From person-to-person

- Sexual contact
- Transdermal
- vertical from the mother to the baby

Mode of Transmission

II. Indirect :

contaminated vehicles such as food, water, inert objects (dressings),

- Vector borne (biological, mechanical)

Transmission of Disease

Fomites

- Inanimate Objects
- Tissues, towel, drinking glasses, needles

Droplet Transmission

- Saliva and Mucus
- Coughing, Sneezing, Laughter
- Less than 1 Meter

Mode of Transmission

- Person-to-person (respiratory, oral, genital, skin, body fluids)
 E.g. tuberculosis, SARS, HIV, measles
- Vector (insects)
 E.g. rabies, yellow fever, dengue, malaria
- Common vehicle (food, water)

E.g. Salmonellosis, cholera

• Fomites (contaminated objects)

E.g. nosocomial infection

• Intra Venous (blood & blood products)

E.g. malaria, hepatitis B

Transplacental

E.g.rubella, HIV

Iceberg Phenomena

ICEBERG PHENOMENA

VARIATION OF SEVERITY OF A DISEASE PROBLEM

ICEBERG PHENOMENA

• EXAMPLES:

- Hepatitis B carriers
- Cholera carriers
- HIV/AIDS

HERD IMMUNITY

<u>Definition:</u> immunity or resistance of a *HERD* (population group or community) to a disease

•Resistance of a group to invasion & spread of an infective agent is based upon the resistance to infection of a high proportion of individuals in a group

Public Health Implication:

Thus an entire population does not have to be immunized to prevent the occurrence of an epidemic

•<u>Example</u>: Measles virus transmission would stop if 70% of the population is immunized

If the infectious agent cannot find a susceptible host to infect, then an epidemic would die out.

Once a certain level of protection against a given disease is achieved by a population (probably around 70% - 85%), even the unprotected members are protected because the uninfected population is not large enough to serve as a reservoir

Herd Immunity Threshold for Selected Vaccine-Preventable Diseases

Modified from Am J Prev Med 2001;20(4S): 88-153

DISEASE	Herd Immunity
Diphtheria (4 doses)	85%
Measles	83-94%
Mumps	75-86%
Whooping cough	92-94%
Polio	80-86%
Rubella	83-85%
Smallpox	80-85%

Quesetion

