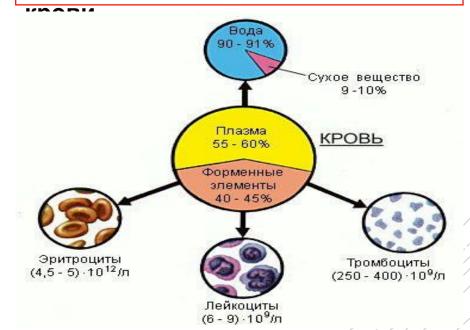
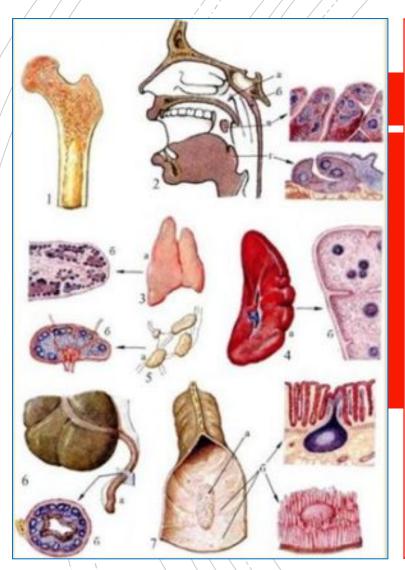
МЕТОДИКА ОБСЛЕДОВАНИЯ БОЛЬНЫХ С ЗАБОЛЕВАНИЯМИ КРОВИ И ОРГАНОВ КРОВЕТВОРЕНИЯ

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ СИСТЕМЫ


KDUBI

Система крови – это функционально неразрывно связанная система кроветворных органов и крови, которая осуществляет важные жизненные функции организма.


Кроветворными органами человека являются: костный мозг, вилочковая железа, селезенка, лимфатические узлы, скопления лимфоидной ткани. Главная функция органов кроветворения состоит в образовании клеток периферической крови в процессе клеточных

- 1 костный мозг
- 2 тимус
- 3-6 глоточное лимфоидное кольцо Пирогова: 3 миндалина языка; 4 небные миндалины; 5 трубные миндалины; 6 глоточная миндалина
- 7 лимфоузлы трахеи и бронхов
- 8 лимфатические узлы периферические
- 9 селезенка
- 10 аппендикс
- 11 солитарные фолликулы кишечника

Кровь относится к внутренней среде организма, представленной жидкой соединительной тканью в виде взвешенных клеточных (форменных) элементов в плазме

КРОВЕТВОРНЫЕ ОРГАНЫ И ИХ ФУНКЦИИ

- 1. Костный мозг находится в эпифизах длинных трубчатых костей и в плоских костях. В красном костном мозге происходит образование эритроцитов, гранулоцитов, моноцитов, тромбоцитов, В-лимфоцитов и предшественников Т-лимфоцитов. Костный мозг участвует в разрушении эритроцитов, в фагоцитозе, в синтезе гемоглобина.
- 2. Вилочковая или зобная железа (тимус) ответственна за дифференцировку Т-лимфоцитов из их костномозговых предшественников, которые осуществляют реакции клеточного иммунитета.
- 3. Селезенка принимает участие в лимфопоэзе, лизисе лейкоцитов, тромбоцитов, эритроцитов (обладает способностью понижать осмотическую устойчивость клеток), накоплении железа, синтезе иммуноглобулинов.
- 4. Лимфатические узлы располагаются по ходу лимфатических сосудов, продуцируют и депонируют лимфоциты, осуществляяя лимфоцитопоэз и иммунологическую защиту.
- 5. Скопление лимфоидной ткани в стенках полых органов пищеварительного тракта и дыхательных путей выполняет локальную иммунную защиту.

КРОВЕТВОРЕНИЕ ИЛИ ГЕМОЦИТОПОЭЗ

КРОВЕТВОРЕНИЕ ИЛИ ГЕМОЦИТОПОЭЗ ПРЕДСТАВЛЯЕТ СОБОЙ ПРОЦЕСС ФИЗИОЛОГИЧЕСКОЙ РЕГЕНЕРАЦИИ КРОВИ, КОТОРЫЙ КОМПЕНСИРУЕТ ФИЗИОЛОГИЧЕСКОЕ РАЗРУШЕНИЕ

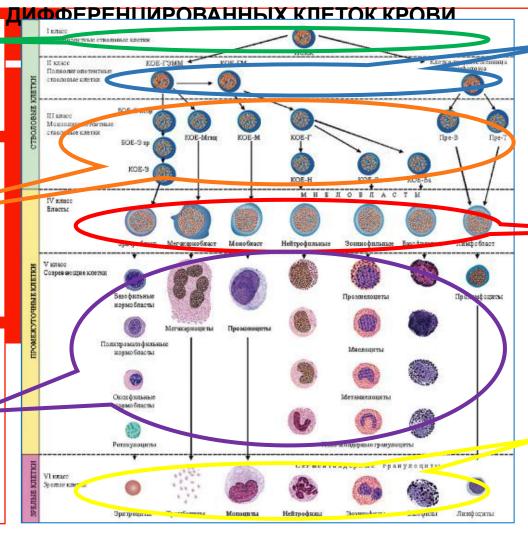
Ікласс

Стволовые клетки полипотентные,

предшественники всех клеток крови, способны к

самостоятельному

III класс


Унипотентные предшественники элементов костного мозга – родоначальники строго

определенных ростков кроветворения (КОЕ-М, КОЕ-Г, КОЕ-ЭО, КОЕ-МГЦ, КОЕ-Э, КОЕ-Б, клетки предшественники В и Т-

лимфоцитов)

V класс

Созревающие клеточные элементы, которые в процессе дифференцировки проделывают неодинаковое количество митозов, поэтому из одной клетки -предшественницы может образовываться разное количество клеток

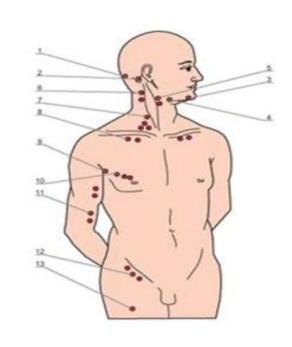
-II класс

Полустволовые или комитированные клетки – полипотентные:
1) миелопоэз (гранулоциты, эритроциты, моноциты, мегакариоциты;

-IV класс

Бластные клетки – представлены морфологически идентифицируемыми гемопоэтическими клетками

2) лимфопоэз.

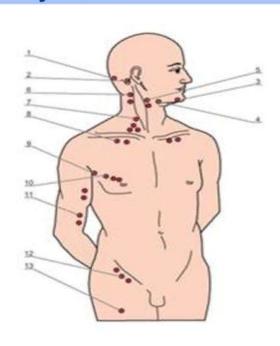

VI класс

Зрелые, дифференцированные клетки, которые током крови вымываются из костного мозга в циркулирующую кровь

Основные синдромы

- Синдром анемии
- Сидеропенический
- Синдром лейкоцитоза и лейкопении
- Геморрагический синдром
- Синдром увеличенный лиматических узлов
- Гепатолиенальный
- Лихорадочный

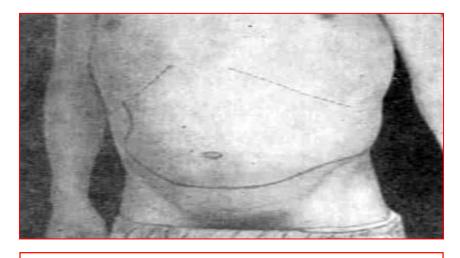
Лимфанопат



Количество, размер, плотность, подвижность, форма, консистенция, спаянность с кожей и между собой. болезненность

Периферические лимфатические узлы

- 1) затылочные,
- 2) заушные,
- 3) подбородочные,
- 4) подчелюстные,
- 5) переднешейные,
- 6) заднешейные,
- 7) надключичные,
- 8) подключичные,
- 9) подмышечные,
- 10) торакальные,
- 11) локтевые,
- 12) паховые,

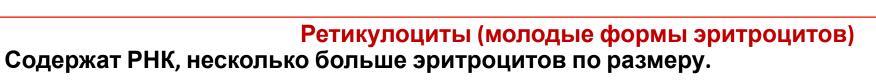


СЕЛЕЗЕНКА

NB!!! Изменение селезенки (увеличение селезенки – спленомегалия) характерно для лейкозов, эритремии, гемолитической анемии, В12-дефицитной анемии, эссенциальной тромбоцитопении, лимфогранулематозе.

- 1. Спленомегалия при хроническом миелолейкозе является наиболее характерным симптомом. Степень увеличения весьма значительна, селезенка может занимать всю левую половину брюшной полости и опускаться даже в малый таз; независимо от увеличения сохраняется ее конфигурация.
- 2. Спленомегалия при хроническом лимфолейкозе характерный симптом. Селезенка меньших размеров, чем при миелолейкозе, выступает на 2-4 поперечных пальца ниже реберной дуги, плотная, гладкая,

Огромных размеров селезенка у больного хроническим миелолейкозом



СОСТАВ КРОВИ, ФОРМЕННЫЕ ЭЛЕМЕНТЫ, КРАСНЫЙ РОСТОК

Эритроциты (красные кровяные тельца)

- Образуются в кроветворных органах, в кровь поступают в виде ретикулоцитов (переходная форма от ядерных к безъядерным эритроцитам) и через 1-3 дня теряют ядро, рибосомы, митохондрии и превращаются в зрелые безъядерные эритроциты.
- 2. Имеют двояковогнутую форму, что позволяет им проникать в капилляры.
- 3. Срок жизни 120 дней.

Ретикулоциты (молодые формы эритроцитов)

Общ. Анализ крови, ХАРАКТЕРИСТИКИ КРАСНОГО РОСТКА

Эритроциты: RBC (red blood cells) — красные кровяные тельца, норма:

- ❖ Женщины 4-5 X 10¹²/л
- **❖** Мужчины 4,5-5,5 X 10¹²/л

Гемоглобин: HGB (Hb, hemoglobin), норма:

- ❖ Женщины 120-140 г/л
- ❖ Мужчины 130-160 г/л

Гематокрит: HCT (hematocrit) —часть (%) от общего объёма крови, приходящаяся на форменные элементы крови:

- **❖** Женщины 35-45%
- **❖** Мужчины − 39-49%

Ретикулоциты (RET): 0,2-1,2%

Эритроцитарные индексы (MCV, MCH, MCHC):

1. MCV (mean corpuscular volume) = HCT/RBC— средний объём эритроцита в кубических микрометрах (мкм) или фемтолитрах (фл).

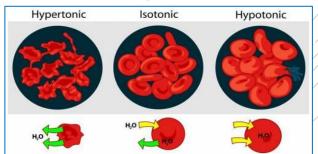
Норма: 80—100 фл!!!

NB! В старых анализах указывали: микроцитоз (диаметр эритроцитов <7 мкм), нормоцитоз (d=7-9 мкм), макроцитоз (d=9-12 мкм), мегалоциты (d>12 мкм).

2. MCH (mean content hemoglobin) = HGB/RBC - среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах

Норма: 26—34 пикограмм!!!

NB! В старых анализах указывали: Цветовой показатель = 3 × Hb в г/л / три Сейчас рассчитать цветовой показатель можно следующим образом: ЦП=МСН*0.03


3. MCHC (mean corpuscular hemoglobin concentration)— средняя концентрация гемоглобина в эритроцитарной массе, а не в цельной крови, отражает степень насыщения эритроцита гемоглобином.

Норма: норма 300—380 г/л

4. Анизоцитоз эритроцитов (RDW - Red cell Distribution Width), %

1. CO3 (ESR) – слой плазмы, освобождающийся от эритроцитов в течение 1 часа.

Норма: женщины 2-15 мм/час, мужчины 1-10 мм/час.

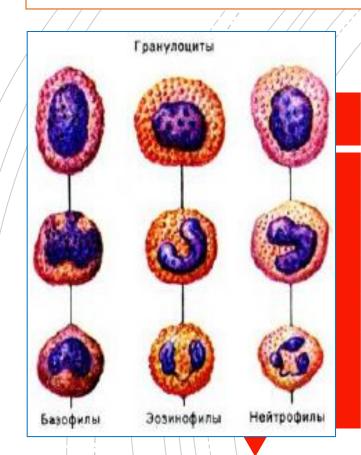
СОСТАВ КРОВИ: ЛЕЙКОЦИТЫ - ГРАНУЛОЦИТЫ

Зернистые лейкоциты или гранулоциты

характеризуются наличием в цитоплазме специфической зернистости и сегментированных ядер

Нейтрофилы в периферической крови определяются в виде сегментоядерных форм, которые имеют ядра, состоящие из 2-3 и более долек, и палочкоядерных форм, которые имеют ядра в виде изогнутой палочки (подковы, буквы S).

- 1. 60 % нейтрофилов находится в костном мозге, 40 % в легких, печени, селезенке, желудочно-кишечном тракте, мышцах, почках, 1 % в периферической крови.
- 2. Продолжительность жизни нейтрофилов 4-5 дней.
- 3. Основные функции: бактерицидная, вирусоцидная, дезинтоксикационная, кандидоцидная обусловлены фагоцитарной активностью нейтрофилов и большим количеством гидролитических и других ферментов; участвуют в воспалительных процессах благодаря биологически активным веществам (энзимной и неэнзимной природы); ведущая роль в образовании активных эндогенных пирогенов и формировании лихорадочной реакции; принимают участие в жизнедеятельности соединительной ткани; обладают тромбопластической активностью.


<u>Эозинофилы</u> – более крупные клетки, чем нейтрофилы, диаметр составляет 12-14 мкм, в цитоплазме содержат специфические оксифильные гранулы, в которых находятся гидролитические ферменты.

- 1. Продолжительность жизни в тканях составляет 8-12 дней.
- 2. Основные функции: принимают участие в защитных реакциях организма на чужеродный белок; участвуют в реакции гиперчувствительности немедленного типа, инактивируют гистамин с помощью фермента гистаминазы; участвуют в реакции гиперчувствительности замедленного типа.

Базофилы имеют диаметр около 11-12 мкм. Цитоплазма базофилов содержит крупные, округлые или полигональные базофильные гранулы, в которых находятся гепарин, гистамин, серотонин, пероксидаза, кислая фосфатаза.

- 1. Продолжительность жизни базофилов 8-12 дней, время циркуляции в периферической крови несколько часов.
- 2. Базофилы содержат на своей поверхности специальные рецепторы для антител класса иммуноглобулин Е.
- 3. Основные функции: принимают участие в регуляции процессов свертывания крови и проницаемости сосудов, выделяя гепарин и гистамин; участвуют в иммунологических реакциях организма, присоединяя

ЛЕЙКОЦИТЫ - ГРАНУЛОЦИТЫ

Клетки	Абсолютное количество/ литр	%
Лейкоциты (WBC)	4,0 - 9,0 X 10 ⁹ /л	-
Базофилы (BASO)	0 - 0,065 Х 10⁰/л	0 – 1%
Эозинофилы (ЕО)	0,02 - 0,3 X 10 ⁹ /л	0,5 – 5%
Нейтрофилы (NEUT)	-	47 – 72 %
миелоциты, %	-	0
юные, %	-	0
Палочкоядерные нейтрофилы	0,04 - 0,3 X 10 ⁹ /л	1-6%
Сегментоядерные нейтрофилы, %	2,0 – 5,5 X 10°/л	47 – 67

Нейтрофильная зернистость – розовато-фионетовая, пыневидная, обиньная, неравномерная; Эозинофильная зернистость – кирпично-розового или буро-синего цвета, однородная, обильная, занимает всю цитоплазму.

обильная, занимает всю цитоплазму.

Базофильная зернистость – фиолетового или черного цвета, неоднородная, необильная, располагается на ядре и цитоплазме.

СОСТАВ КРОВИ: ЛЕЙКОЦИТЫ - АГРАНУЛОЦИТЫ

Агранулоциты представлены лимфоцитами и моноцитами

Лимфоциты характеризуются наличием интенсивно окрашенного ядра округлой или бобовидной формы и небольшого ободка базофильной цитоплазмы.

В-лимфоциты:

- 1) Обеспечение гуморального иммунитета благодаря выработке гуморальных медиаторов (лимфокинов)
- 2) Образующиеся из В-лимфоцитов эффекторные клетки плазмоциты вырабатывают особые защитные белки иммуноглобулины (IgM, IgG, IgA, IgE, IgD).

Тимусзависимые лимфоциты (Т-лимфоциты) обеспечивают реакции клеточного иммунитета и регуляцию гуморального иммунитета:

- 1) Цитотоксические Т-лимфоциты (киллеры), которые являются эффекторными клетками клеточного иммунитета, убивают чужие и собственные измененные клетки;
- 2) Т-лимфоциты- хелперы (помощники), обладают способностью специфически распознавать антиген и усиливать образование антител
- 3) Т-супрессоры (угнетающие), подавляющие способность В-лимфоцитов участвовать в выработке антител.

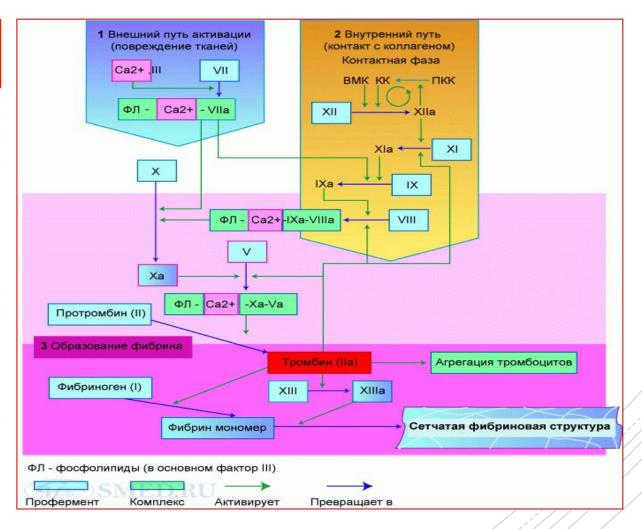
Моноциты – крупные клетки крови, размер их достигает 18-20 мкм. Ядра моноцитов – бобовидные, дольчатые, подковообразные.

- 1) осуществляют фагоцитоз чужеродных частиц, макромолекул, коллагена, клеток крови и гемоглобина, выполняя в организме роль —мусорщиков;
- 2) агоцитоз возбудителя, иммунных комплексов, продуктов клеточного распада;
- з) выделение биологически активных веществ (простагландинов), ферментов;
- 4) взаимодействие с плазменными (свертывающей, фибринолитической и кининовой системами) и тканевыми факторами;
- **5)** образование активных пирогенов;
- 6) выделение ингибиторов воспаления;
- 7) участвуют в реапизации иммунного ответа.

ОАК: ЛЕЙКОЦИТЫ – АГРАНУЛОЦИТЫ И ТРОМБОЦИТЫ

Клетки	Абсолютное количество/ литр	%
Лейкоциты (WBC)	4-9 X 10 ⁹ л	-
Лимфоциты (LYM)	1,2 - 3,0	19 - 37
Моноциты (MON)	0,09 - 0,6	2 - 8
Количество тромбоцитов	180-320-109/л	-

СИСТЕМА СВЕРТЫВАНИЯ КРОВИ


Свертывание крови – сложный ферментативный процесс, в котором принимают участие плазменные факторы свертывания крови, пластинчатые (тромбоцитарные) факторы,

В тромбоцитах содержится более десятка веществ, участвующих в свертывании

крови.

Плазменные факторы свертывания крови

Фактор Название		Активная форма, функция		
I	Фибриноген	Образует полимер фибрин		
П	Протромбин	Тромбин, фермент. Полимеризуется в фибриноген, активирует факторы V, VIII, XIII, стимулирует противосвертывающую систему		
III	Тромбопластин (фермент)	Кофактор фактора VII		
IV	Ионы кальция	Участвует в активировании и агрегации тромбоцитов, полимеризации фибриногена, стабилизации фибрина. Связывает факторы протромбинного комплекса с фосфолипидами		
V	Проакцелерин (плазменный Ас-глобулин)	Регуляторный белок, активирует фактор X		
VI	Исключен из классификаци	И		
VII	Проконвертин	Активирует фактор X, ускоряет превращение протромбина в тромби		
VIII	Антигемофильный глобулин			
IX	Плазменный компо- нент тромбопластина (Кристмас-фактор)	Участвует в качестве катализатора, активирует фактор X в комплексе с фактором VIII и IV		
X	Фактор Стюарта — Пауэра	Участвует в образовании протромбиназы, превращающей протромбин в тромбин		
XI	Предшественник плазменного тромбопластина	Участвует в активировании факторов VIII и IX		
XII	Фактор Хагемана	Участвует в активировании фактора XI, превращении прекалликре на в калликреин		
XIII	Фибриназа	Стабилизирует фибрин, участвует в формировании плотного сгустка		

ПОКАЗАТЕЛИ НОРМАЛЬНОЙ КОАГУЛОГРАММЫ У ВЗРОСЛЫХ, 1

<u>Время кровотечения</u> — основной состояния сосудисто-тромбоцитарного звена системы гемостаза.
↑ тромбоцитопения; тромбоцитопатия; гемофилия; алкогольная болезнь печени; цирроз печени; геморрагические лихорадки; передо́зировка антикоагулянтами и антиагрегантами. ↓ диагностического значения не имеет; техническая ошибка при проведении исследования. Активированное частичное тромбопластиновое время (АЧТВ) - время образования кровяного сгустка после соединения с плазмой хлорида кальция, самый чувствительный показатель свертываемости крови. недостаточность II, V, VIII, IX, X, XI, XII факторов свертывания крови; фибринолиз; ДВС-синдром, 2-я и 3-я фазы; гепаринотерапия (фраксипарином и аналогами); аутоиммунные заболевания; тяжелые печеночные заболевания; антифосфолипидный синдром (АФС) и т.д. **ДВС-синдром, 1-я фаза; тромбозы; тромбоэмболии; неаккуратный забор крови на анализ; беременность.** Протромбиновое время (ПТВ) - время формирования тромбинового сгустка, если добавить в плазму кальций и тромбопластин, характеризует коагуляционный (плазменный) гемостаз - активность II, V, VII и X факторов. Терапия антикоагулянтами считается действенной, если ПТВ увеличивается хотя бы в 1,5-2 раза. дефицит факторов VII, X, V, II (протромбинового к-са); прием антикоагулянтов непрямого действия; болезни печени и желчевыводящих путей; лечение нефракционированным гепарином; инфузии реополиглюкина, препаратов гидроксиэтилкрахмала; наличие в крови волчаночного антикоагулянта. **↓ДВС-синдром**; последние недели беременности; прием пероральных контрацептивов; лечений концентратами факторов протромбинового комплекса. MHO (Международное нормализованное отношение) - отношение ПТВ пациента к ПТВ нормальной плазмы.
↑ цирроз печени; хронические гепатиты; дефицит витамина К; амилоидоз; нефротический синдром; ДВС-синдром; наследственный дефицит II,V,VII и X факторов свертывания; снижение уровня фибриногена или его отсутствие; лечение производными кумарина. Ј тромбозы; тромбоэмболии; активация фибринолиза; повышение активности VII фактора свертывания. Тромбиновое время (ТВ) - третий по значимости базисный коагуляционный тест, характеризующий конечный этап процесса свертывания — превращение фибриногена в фибрин под действием тромбина. ↑гипофибриногенемия (ниже 0,5 г/л); ДВС-синдром; терапия фибринолитическими препаратами; аутоиммунные заболевания; хронические заболевания печени; острый ДВС-синдром; присутствие в крови антикоагулянтов прямого действия; гипербилирубинемия; парапротеинемия; уремия; мультиформная миелома↑лечение гепарином и ингибиторами полимеризации фибрина; гиперфибриногенемия (фибриноген 6,0 г/л и выше); острый и подострый ДВС-синдрома, начальная

фаза.

ПОКАЗАТЕЛИ НОРМАЛЬНОЙ КОАГУЛОГРАММЫ У ВЗРОСЛЫХ, 2

Фибриноген - фактор I (первый) свертывающей системы плазмы - относится к белкам острой фазы, его концентрация повышается в плазме при инфекциях, травмах, стрессах.

- ↑тяжелые инфекционные заболевания; перед развитием инфаркта миокарда и инсульта; системные заболевания соединительной ткани; злокачественные новообразования; беременность; ожоговая травма; после хирургических операций; амилоидоз; менструация; лечение гепарином и его низкомолекулярными аналогами, эстрогенами, пероральными контрацептивами; разнообразная почечная патология.

Антитромбин III (AT III) - физиологический антикоагулянт, ингибитор плазменных факторов свертывания крови, плазменный кофактор гепарина. Оказывает основное антикоагуляционное действие на процессы свертывания крови.

- ↑тяжелые инфекционные заболевания; острые гепатиты; дефицит витамина К; холестаз; тяжелый острый панкреатит; рак поджелудочной железы; менструация; лечение анаболическими стероидами, непрямыми антикоагулянтами.
- ↓ врожденный и наследственный дефицит АТ III; алкогольная болезнь печени; цирроз печени; острый ДВСсиндром; ИБС; последний триместр беременности; атеросклероз; после хирургических операций;

D-димеры — специфические продукты деградации фибрина, входящие в состав тромба. Концентрация D-димеров в сыворотке пропорциональна активности фибринолиза и количеству лизируемого фибрина. Данный тест позволяет судить об интенсивности процессов образования и разрушения фибриновых сгустков.

↑артериальные и венозные тромбозы и тромбоэмболии различной локализации; многочисленные печеночные заболевания; обширные гематомы; ИБС; инфаркт миокарда; послеоперационный период обширных хирургических вмешательств; длительный стаж табакокурения; ДВС-синдром;

Растворимые фибрин-мономерные комплексы (РФМК) являются промежуточными продуктами распада фибринового сгустка вследствие фибринолиза, относится к тестам активации свертывания крови (паракоагуляции). Тест РФМК используется, главным образом, для ранней диагностики ДВС-синдрома.

ДВС-синдром; артериальные и венозные тромбозы и тромбоэмболии различной локализаций; послеоперационный период обширных хирургических вмешательств; осложненная беременность; физиологическая беременность; период новорожденности; острая и хроническая почечная недостаточность; сепсис; шок; системные заболевания СТ.

ПОКАЗАТЕЛИ НОРМАЛЬНОЙ КОАГУЛОГРАММЫ У ВЗРОСЛЫХ

Показатель	Норма
Время кровотечения	3–10 мин.
Активированное частичное тромбопластиновое время (AЧТВ)	25,4–36,9 сек.
Протромбиновое время (ПТВ) время формирования тромбинового сгустка, если добавить в плазму кальций и тромбопластин, характеризует коагуляционный (плазменный) гемостаз.	11–15 сек.
МНО (Международное нормализованное отношение), или протромбиновый коэффициент	0,8–1,15
Тромбиновое время (ТВ)	18-24 c
Фибриноген - фактор I (первый) свертывающей системы плазмы	2,75–3,65 г/л
Антитромбин III (AT III)	75–125%
D-димеры	33,5–727,5 нг/мл
Растворимые фибрин-мономерные комплексы (РФМК)	по ортофенантролиновому тесту — до 4,0 мг%

ОАК - ПАТОЛОГИЯ, ЭРИТРОЦИТЫ (КОЛИЧЕСТВЕННЫЕ ИЗМЕНЕНИЯ)

ПАТОЛОГИЧЕСКОЕ УВЕЛИЧЕНИЕ КОЛИЧЕСТВА ЭРИТРОЦИТОВ		
???	????	
ПАТОЛОГИЧЕСКОЕ УМЕНЬШЕНИЕ І	КОЛИЧЕСТВА ЭРИТРОЦИТОВ	
????	????	

ОАК - ПАТОЛОГИЯ, ЭРИТРОЦИТЫ (КОЛИЧЕСТВЕННЫЕ ИЗМЕНЕНИЯ)

ПАТОЛОГИЧЕСКОЕ УВЕЛИЧЕНИЕ КОЛИЧЕСТВА ЭРИТРОЦИТОВ

Абсолютное

- 1) Первичный эритроцитоз, обусловленный пора-жением кроветворных органов при истинной полицитемии (болезнь Вакеза).
- 2) Вторичный эритроцитоз, обусловленный:
- патологией некроветворных органов:
- **♦** гипоксия;
- повышенная продукцией эритропоэтина;
- избыточное количество АКТГ и андрогенов.

Относительное

- 1) Сгущение крови:
- неукротимая рвота
- длительные поносы;
- массивные ожоги
- Отеки
- 2) Перераспределение крови:
- алкоголизм
- **♦** AГ

ПАТОЛОГИЧЕСКОЕ УМЕНЬШЕНИЕ КОЛИЧЕСТВА ЭРИТРОЦИТОВ

Абсолютное

- 1) Первичная эритропения, обусловленная угнетением гемопоэза: лейкозы, гипо- и апластические анемии.
- 2) Вторичная эритропения: постгеморрагические анемии, гемолитические анемии, железодефицитные анемии, В12-фолиеводефицитные анемии

Относительное

«Разжижение» крови в результате схождения отеков, парентерального питания и вливания плазмозаменителей.

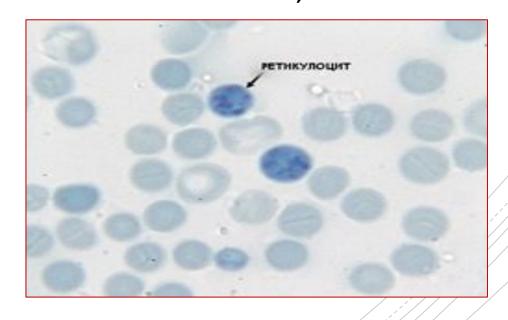
ОАК - ПАТОЛОГИЯ, РЕТИКУЛОЦИТЫ

Увеличение ретикулоцитов (ретикулоцитоз):

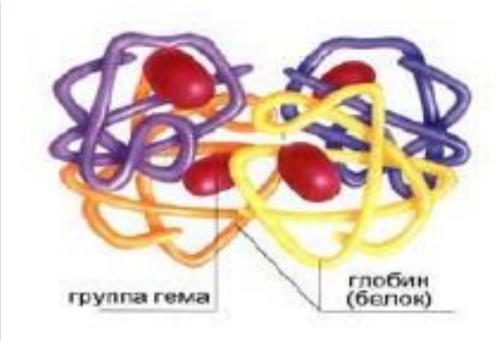
- 1) острое кровотечение (свыше 6-10 % объема потери крови на 3-4-й день по-сле кровотечения);
- 2) острый гемолиз (до 20-25 % и выше);
- 3) гемолитические анемии (как ответ на повышенную потребность организма в эритроцитах);
- 4) лечение гемопоэтическими препаратами (препараты железа, витамины, фолиевая кислота).

NB!!! Количество ретикулоцитов начинает увеличиваться с 4 дня, максимум – на 8-9 день и возвращается к норме в конце второй недели.

Уменьшение ретикулоцитов (ретикулопения):


- 1) хронические железодефицитные анемии (нелеченные);
- 2) мегалобластные анемии;

ГИПЕРРЕГЕНЕРАТОРНЫЕ >1,2%

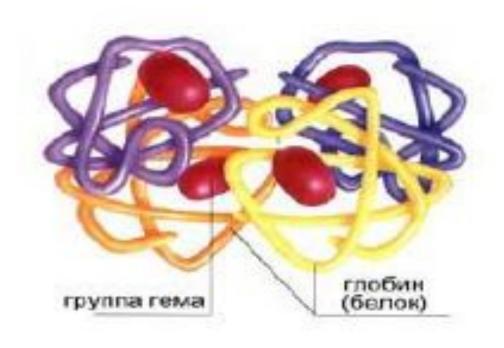


ОАК - ПАТОЛОГИЯ, ГЕМОГЛОБИН

Клиническое значение изменения концентрации гемоглобина

1. Увеличение:????

2. Уменьшение:???


КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ИЗМЕНЕНИЯ СРЕДНЕГО СОДЕРЖАНИЕ ГЕМОГЛОБИНА В ОТДЕЛЬНОМ ЭРИТРОЦИТЕ

ИЛИ ЦВЕТОВОГО ПОКАЗАТЕЛЯ

ОАК - ПАТОЛОГИЯ, ГЕМОГЛОБИН

Клиническое значение изменения концентрации гемоглобина

- 1. Увеличение:
 - эритремия;
 - легочно-сердечная недостаточность;
 - пороки сердца (врожденные и приобретенные);
 - сгущение крови.
- 2. Уменьшение:
 - ***** анемии;
 - гемолиз (острый и хронический).

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ИЗМЕНЕНИЯ СРЕДНЕГО СОДЕРЖАНИЕ ГЕМОГЛОБИНА В ОТДЕЛЬНОМ ЭРИТРОЦИТЕ

ИЛИ ЦВЕТОВОГО ПОКАЗАТЕЛЯ

Нормохромия	Гипохромия	Гиперхромия
Здоровые лица, острые кровопотери	Железодефицитные и же- лезорефрактерные анемии	Мегалобластные анемии

/	Лейкоцитоз	Лейкопения	
	????	???	

ОАК – ЛЕЙКОЦИТЫ, ФИЗИОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ

					_
/		Лейкоцитоз		Лейкопения	
	1)	Новорожденные – 12-15х10³/л (нейтрофилов	1)	Наследственная предрасположенность.	
		60 %).	2)	Повышение тонуса парасимпатической	
//	2)	Дети от 2 недель до 2 лет – 8-13x10 ⁹ /л		нервной системы.	
		(лимфоциты 50-60 %).	3)	Солнечная радиация.	
/	3)	К 12 годам лимфоциты снижаются до 25-48 %,	4)	Длительное голодание.	
		к 15 годам – норма взрослого.	5)	Состояние сна, гипноза.	
	4)	Суточные колебания (повышается	6)	Пожилой возраст	
		содержание во вторую половину дня).			
	5)	Прием пищи (пищевой лейкоцитоз –			
		временный).			
	6)	Физическая нагрузка (до 20-25х10°/л).			
	7)	Беременность (до 17-34х10°/л).			ľ
	8)	Эмоциональное напряжение боль, страх – до			1
\		18х10°/л).			
	9)	ультрафиолетовое облучение крови .			

ОАК – ЛЕЙКОЦИТЫ, ФИЗИОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ

	Лейкоцитоз	Лейкопения
	Первичный: лейкемические формы	-//-
острого и хронического лейкоза		
	Вторичный:	1) Бактериальная инфекция (брюшной тиф,
	1) инфекционные процессы (за исключением	бруцеллез)
	брюшного тифа)	2) Вирусные заболевания
2	2) нагноительные, воспалительные процессы	3) Атоиммунные заболевания (системная
3	3) инфаркт миокарда	красная волчанка)
4	4) злокачественные опухоли	4) Гипо-, апластические состояния
5	5) ожоги – уремия – значительные кровопотери	(эндогенного и экзогенного происхождения)
	– шок – послеоперационные состояния –	5) Гемобластозы (алейкемические формы)
	анестезия – агонирующее состояние	

ОАК, ИЗМЕНЕНИЕ КОЛИЧЕСТВА НЕЙТРОФИЛОВ

	Нейтрофилез	Нейтропения
/	???	????

ОАК, ИЗМЕНЕНИЕ КОЛИЧЕСТВА НЕЙТРОФИЛОВ

/	Нейтрофилез	Нейтропения
	1. Острые инфекционные	1. Вирусные инфекции.
	заболевания.	2. Миелотоксические влияния.
$^{\prime}/\!{}^{\prime}$	2. Воспалительные и	3. Острый алейкемический
	нагноительные процессы.	лейкоз.
	3. Распадающиеся опухоли.	
	4. Интоксикация.	
	5. Уремия.	
	6. Кровопотеря.	
	7. Инфаркт миокарда.	
	8. Ожоги.	
	9. Гангрена.	
\		/ /// /

Сдвиг формулы ???

ИЗМЕНЕНИЯ ЛЕЙКОЦИТАРНОЙ ФОРМУЛЫ

Нормальные показатели нейтрофилов в периферической крови (%)

Миелоциты	Метамиелоциты	Палочкоядерные	Сегментоядерные
-	-	1-6%	45-70%

Сдвиг нейтрофильной формулы влево – это увеличение количества палочкоядерных более 6 % и появление юных форм (метамиелоцитов и миелоцитов), свидетельствует о воспалительном, гнойном процессе.

Регенеративный сдвиг характеризуется увеличением общего количества лейкоцитов и палочкоядерных нейтрофилов, свидетельствует о воспалительном процессе

с благоприятным исходом.

Дегенеративный сдвиг: увеличение палочкоядерных нейтрофилов на фоне лейкопении, что служит прогностически неблагоприятным признаком у больных с тяжелым гнойно-септическим процессом.

Лейкемоидная реакция – появление в периферической крови незрелых, промежуточных клеток миело- и лимфопоэза, может протекать по миелоидному и лимфоидному типу.

Лейкемоидная реакция миелоидного типа встречается у больных с сепсисом, гнойным процессом, выраженной интоксикацией, шоком, метастазами рака в костный мозг.

Лейкемоидная реакция лимфоидного типа отмечается при туберкулезе, мононуклеозе.

ОАК - ПАТОЛОГИЯ, ЭОЗИНОФИЛЫ И БАЗОФИЛЫ

Эозинофилия, более 4X10¹²/л

Повышение ????

Снижение количества эозинофилов????

Клиническое значение базофилии???.

ОАК - ПАТОЛОГИЯ, ЭОЗИНОФИЛЫ И БАЗОФИЛЫ

Эозинофилия, более 4X10¹²/л

Первичная: поражение костного мозга.

Вторичная:

- аллергия (бронхиальная астма, сенная лихорадка, отек Квинке, аллергический дерматит, лекарственная непереносимость пенициллин, йод);
- гельминтозы (трихинеллез, эхинококкоз, аскаридоз, филяридоз, шистоматоз, стронгилоидоз, анкилостомидоз, описторхоз);
- хронические дерматиты, псориаз;
- коллагенозы (системная красная волчанка, узелковый периартериит, ревматоидный артрит);
- опухоли (гемобластозы, саркоидоз, рак печени, опухоли матки и яичников с метастазами); неспецифический язвенный колит; туберкулезный лимфоаденит;
- скарлатина;
- в период выздоровления после инфекционных и воспалительных заболеваний.

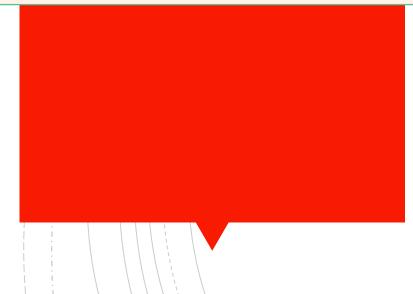
Снижение количества эозинофилов менее 2-3 % свидетельствует об ослаблении функций гипофиза.

- 1. Прогностическое значение изменения эозинофилов: эозинопения на фоне лейкоцитоза и нейтрофилеза прогрессирование процесса.
- 2. Эозинопения на фоне нейтрофилеза в сочетании с лейкопенией неблагоприятный прогноз.
- 3. Эозинофилия на фоне нейтропении период выздоровления.

Клиническое значение базофилии

- 1. Первичная: хронический миелолейкоз, эритремия.
- 2. Вторичная: хронический язвенный колит, дерматиты, опоясывающий лишай.

ОАК - ПАТОЛОГИЯ, МОНОЦИТЫ


Моноцитоз	Моноцитопения
????	3333

ОАК - ПАТОЛОГИЯ, МОНОЦИТЫ

/	Моноцитоз	Моноцитопения
	Первичный: 1) острый лейкоз (миеломоноцитарный),	Тяжелый сепсис,
	2) хронический лейкоз, 3) лимфогранулематоз	гипертоксическая форма инфекции
	Вторичный: 1) подострые и хронические бактериальные инфекции (подострый инфекционный эндокардит, легочный туберкулез, сифилис, бруцеллез, сепсис, малярия); 2) инфекционный мононуклеоз (специфическая	форма инфекции
	реакция на вирус); 3) паразитарные инфекции (малярия, лейшманиоз); 4) неспецифический язвенный колит; коллагенозы (системная красная волчанка, ревматоидный артрит);	
	5) спленэктомия; 6) сыпной тиф; 7) саркоидоз; 8) период выздоровления после инфекций	

ОАК - ПАТОЛОГИЯ, ЛИМФОЦИТЫ

Лимфоцитоз	Лимфоцитопения
???	????

ОАК - ПАТОЛОГИЯ, ЛИМФОЦИТЫ

Лимфоцитоз

Первичный: гемобластозы (хронический лимфолейкоз, лимфомы)

Вторичный:

- 1) острые вирусные инфекции инфекционный мононуклеоз, острый инфекционный лимфоцитоз (только у детей высокий лейко- и лимфоцитоз кратковременное явление; отсутствуют клетки Боткина-Гумпрехта, вызван аденовирусом), ветряная оспа, корь, краснуха, вирусный гепатит; хронические
- 2) бактериальные инфекции (сифилис, туберкулез, бруцеллез);
- 3) протозойная инфекция (токсоплазмоз, лейшманиоз); гипертиреоз;
- 4) саркома грудной клетки;
- 5) лекарственная аллергия.

Лимфоцитопения

- 1. Гипоплазия тимуса у детей и подростков.
- 2. Лимфогранулематоз.

ОАК - ПАТОЛОГИЯ, ИЗМЕНЕНИЯ ТРОМБОЦИТОВ

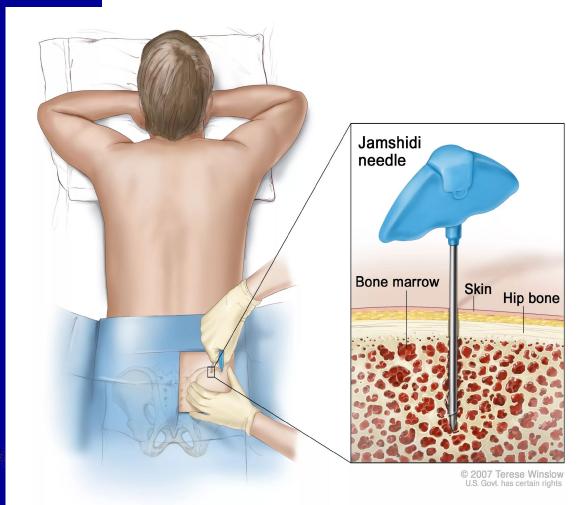
Физиологическое изменение количества тромбоцитов

	Тромбоцитоз	Тромбоцитопения
/	 Возбуждение симпатической нервной системы: физические нагрузки, эмоциональные нагрузки. Беременность 	 Возбуждение парасимпатической нервной системы. Перед менструацией.

Патологическое изменение количества тромбоцитов

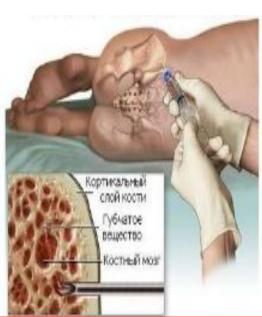
Тромбоцитоз свыше 320х10°/л.	Тромбоцитопения меньше 180х10°/л
Первичный тромбоцитоз обусловлен первичной пролиферацией мегакариоцитов или миелоидной метаплазией костного мозга: 1) эритремия, 2) хронический миелолейкоз.	 Первичная (поражение на уровне кроветворных органов): 1) болезнь Верльгофа (обусловлена замедленным вызреванием тромбоцитов и образованием антитромбоцитарных антител); 2) гипо- и апластическое состояние костного мозга в результате лучевой болезни, бензольной интоксикации, осложнений цитостатической терапии; 3) острый лейкоз и миеломная болезнь (тромбоцитопения обусловлена опухолевым пролиферативным процессом в костном мозге и образованием антител к собственным тромбоцитам).
Вторичный тромбоцитоз не связан с первичным поражением кроветворных органов, возникает на фоне хронических заболеваний (ревматизм, ревматоидный артрит, неспецифический язвенный колит, туберкулез, цирроз печени, остеомиелит, амилоидоз, лимфогранулематоз, карцинома), а также после спленэктомии	Вторичная: 1) спленомегалия при паразитарных и инфекционных заболеваниях, некоторых интоксикациях, портальной гипертензии, гемобластозах, гемолитических анемиях (обусловлена тормозящим влиянием селезенки на костный мозг); 2) коллагенозы; 3) токсические состояния;

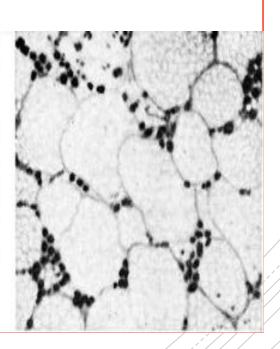
- Стернальная пункция один из методов прижизненного исследования костного мозга. Предложена М.И. Аринкиным.
- Проводится через переднюю стенку грудины. Можно пунктировать подвздошную кость, а у грудных детей большеберцовую или пяточную кости. Однако грудина является наиболее удобным местом для костномозговой пункции. Стернальную пункцию делают на уровне ІІ или ІІІ межреберья либо в области рукоятки грудины специальной иглой (игла И.А. Кассирского).
- Игла снабжена перемещаемым щитком, предохраняющим от прокола внутренней
 пластинки грудины и повреждения лежащей за ней аорты. Щиток устанавливают с
 таким расчетом, чтобы игла, пройдя мягкие ткани, продвинулась еще на 5 мм. Вынув
 мандрен, к игле присоединяют 10- или 20-граммовый шприц и производят
 отсасывание 0,2 мл костного мозга. Из полученного пунктата готовят мазки, которые
 фиксируют и окрашивают подобно мазкам крови.

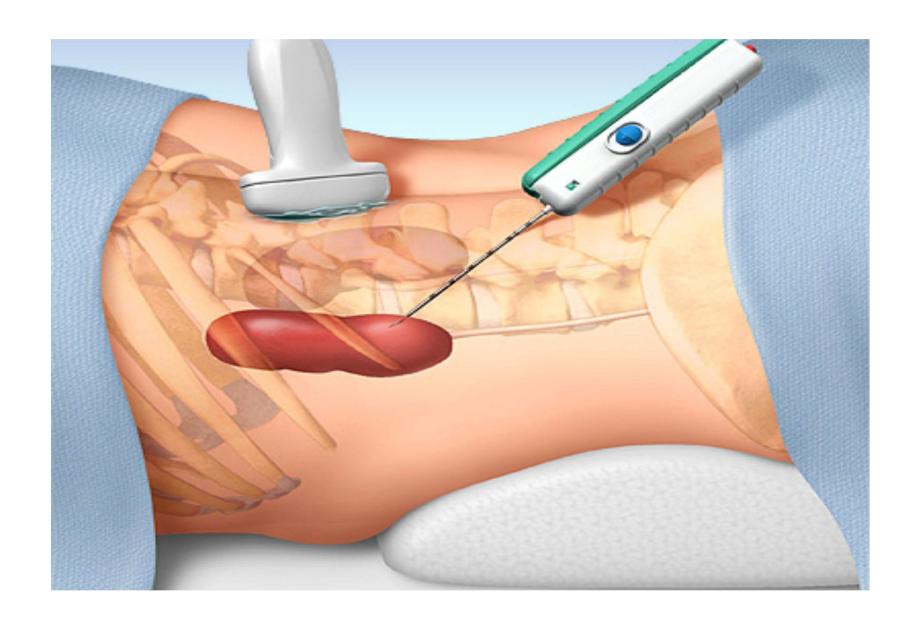


Стернальная пункция

Трепанобиопсия


- метод прижизненного извлечения костной ткани (преимущественно спонгиозной) для исследования костного мозга. Трепанобиопсия имеет определенное преимущество перед стернальной пункцией, дающей возможность изучать только разрозненные клетки костного мозга в смеси с клетками крови. При трепанобиопсии извлекают кусочек костного мозга с сохранением его структуры, что позволяет правильно оценить соотношение деятельного и жирового костного мозга, выявить очаговые и диффузные изменения в нем.
- Трепанобиопсию производят специальной иглойтроакаром конструкции проф. М. Г. Абрамова. Иглатроакар состоит из иглы длиной 4 см и внутренним диаметром 2 мм, щитка, позволяющего установить необходимую глубину прокола, мандрена и рукоятки. Конец иглы заточен таким образом, что игла при вращении вырезает столбик костной и костномозговой ткани.
- Прокол производят в гребешке подвздошной кости




ПАТОЛОГИЯ ПРИ ИССЛЕДОВАНИИ КОСТНОГО МОЗГА

В норме количество миелокариоцитов колеблется в широких пределах от 30-40 до 200 тыс. на 1 мм³, мегакариоцитов – 20 и более на 1 мм³

- 1. Количество миелокариоцитов менее 30000 в 1 мкл. может свидетельствовать о гипопластических состояниях (гипо- или апластическая анемия, лучевая болезнь_.
- 2. Лейкоцитарно-эритроцитарное соотношение:
 - 1) B HOPME 5:1 / 4:1
 - 2) при анемиях: 1:2 / 1:3
 - **3)** при лейкозах: 6:1 / 8:1 и более
- 3. Костномозговой индекс созревания нейтрофилов
- 4. Индекс созревания эритробластов
- 5. Количество бластов:
 - **1)** HOPMA 2-4%
 - 2) миелодиспластические состояния 5-8%
 - 3) 10-20% малопроцентные варианты острых лей
 - 4) 20% и более типичные острые лейкозы

Пункция лимфатических узлов и селезенки

- Нередко прибегают к пункции увеличенных лимфатических узлов, дающей возможность определить характер изменений их клеточного состава и уточнить диагноз ряда системных заболеваний лимфатического аппарата: лимфолейкоза, лимфогранулематоза, лимфосаркоматоза, обнаружить метастазы опухолей и др. Более точные данные можно получить с помощью биопсии лимфатического узла. Пункцию производят без анестезии простой инъекционной иглой, надетой на 10-граммовый шприц. Из полученного пунктата делают мазки. Такова же техника пункции селезенки. Ее производят при задержке дыхания на высоте вдоха во избежание травмы селезенки при дыхательных движениях.
- Комплексное изучение клеточного состава костного мозга, селезенки и лимфатических узлов позволяет уточнить характер взаимоотношений между этими отделами кроветворной системы, выявить наличие экстрамедуллярного (внекостномозгового) кроветворения, появляющегося при некоторых поражениях костного мозга.