Использование информационных технологий в преподавании ДИСЦИПЛИНЫ "Электрические машины"

АВТОР: ПРЕПОДАВАТЕЛЬ СПБТОТФИП САВВАТЕЕВ АНДРЕЙ СЕРГЕЕВИЧ

Средства информационных технологий

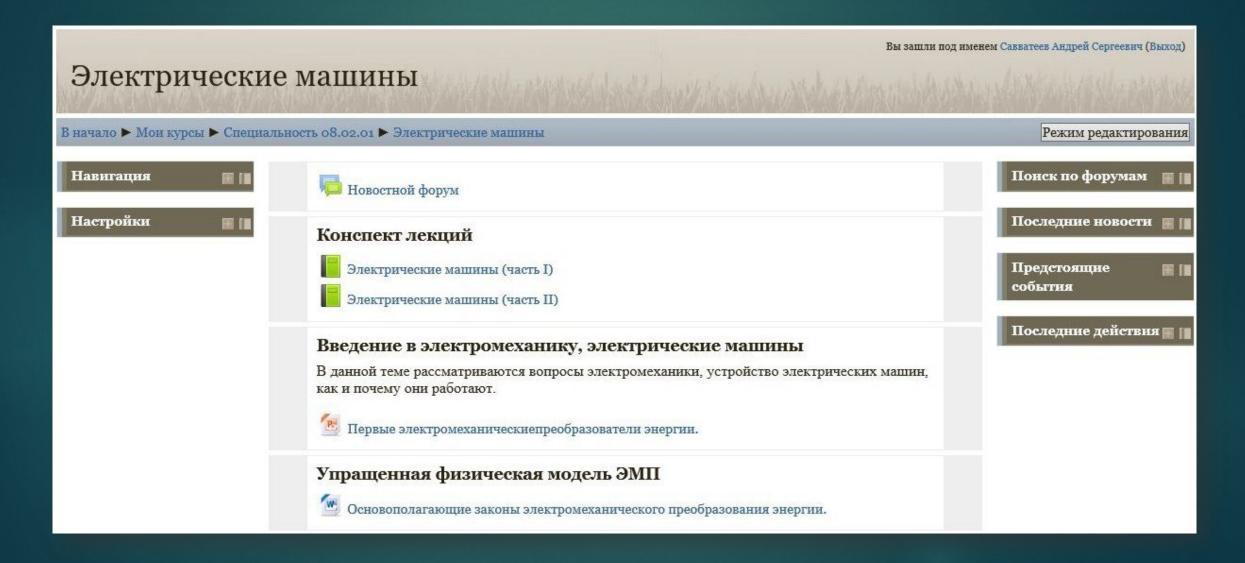
Обучающие

(сообщают знания, формируют навыки и умения учебной деятельности)

Тренажеры

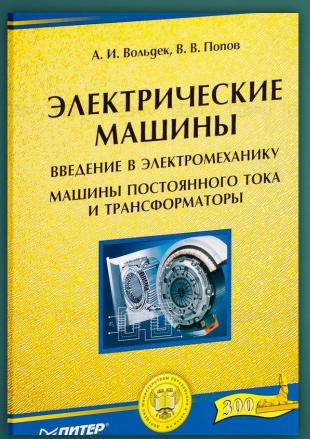
(предназначены для отработки, повторения изученного материла)

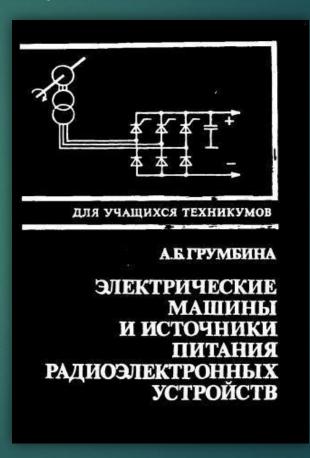
Демонстрационные


(визуализируют изучаемый материал, явления, процессы с целью их дальнейшего изучения)

Имитационные

(представляют определенный аспект реальности для изучения его структурных или функциональных характеристик)


Расчетные


(автоматизация различных расчетов и других операций)

Электронные учебники

Конспект лекций

Конспект лекций

Электрические машины (часть I)

Электрические машины (часть II)

Вы зашли под именем Савватеев Андрей Сергеевич (Выход

Электрические машины

В начало ▶ Мои курсы ▶ Специальность о8.02.01 ▶ Электрические машины ▶ Конспект лекций ▶ Электрические машины (часть I)

Оглавление

- Физические основы электромеханического преобразования энергии
- 2 Электрические машины постоянного и переменного тока
- 3 Исторические этапы и современное состояние электромашиностроения

Навигация

1 Физические основы электромеханического преобразования энергии

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах.

Закономерности преобразования энергии в индуктивных ЭМП определяются физическими законами, устанавливающими связи между различными величинами и параметрами электрических, магнитных и механических процессов. Важнейшими для понимания физической природы электромеханического преобразования энергии являются законы электромагнитной индукции и электромагнитного взаимодействия. Напомним кратко эти законы в терминах и понятиях, наиболее часто употребляемых в теории ЭМП.

Закон электроматитной индукции устанавливает закономерность возникновения ЭДС в электрических контурах или отдельных проводниках, находящихся в магнитном поле.

Презентации, доклады, статьи

Введение в электромеханику, электрические машины

В данной теме рассматриваются вопросы электромеханики, устройство электрических машин, как и почему они работают.

Первые электромеханическиепреобразователи энергии.

Первые электромеханическиепреобразователи энергии.

Упращенная физическая модель ЭМП

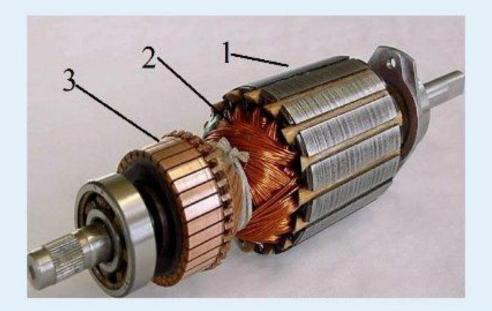
Основополагающие законы электромеханического преобразования энергии.

Тест на знания конструкции и устройств машины

Вопрос 1

Пока нет ответа

Балл: 1,00


 Отметить вопрос

Редактировать вопрос

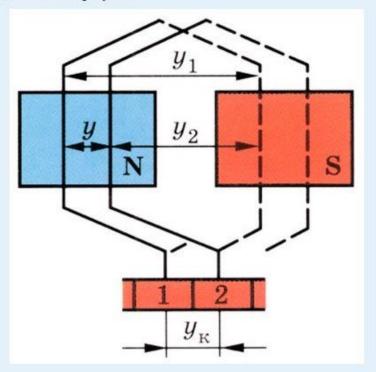
Напишите, из каких частей, указанных на рисунке, состоит якорь машины постоянного тока

- 1- Сердечник якоря
- 2- Обмотка

3-

Ответ: коллектор

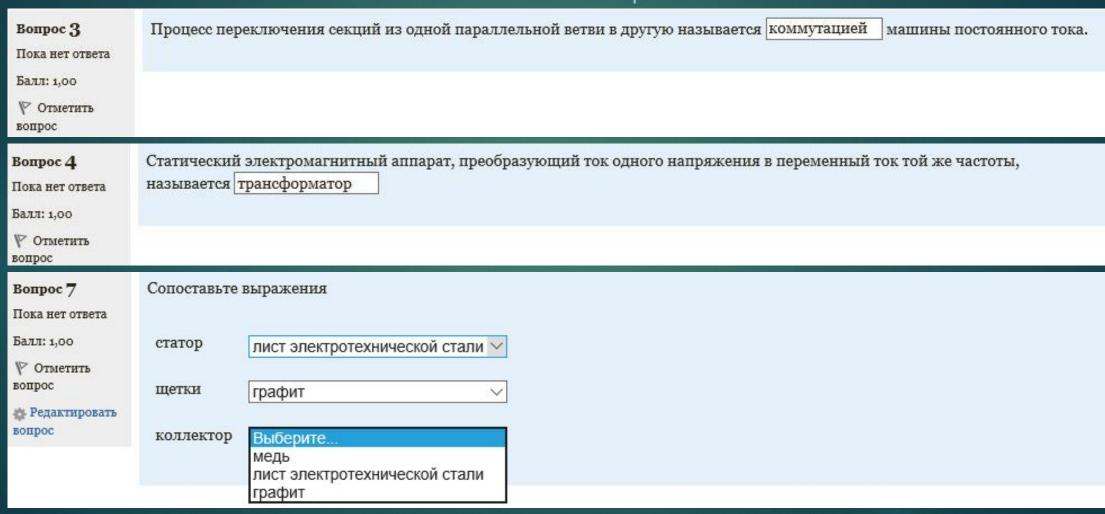
Тест на знания конструкции и устройств машины


Вопрос 2

Пока нет ответа

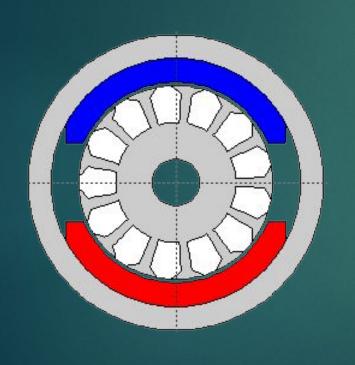
Балл: 1,00

Отметить вопрос


Редактировать вопрос Секция какой обмотки якоря представлена на рисунке?

Выберите один ответ:

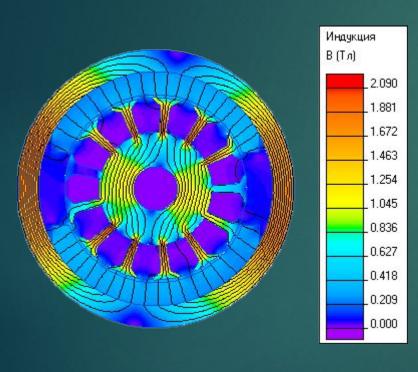
- 1. сложная петлевая
- 0 2. простая волновая
- 3. сложная волновая
- 4. простая петлевая


Тест на знания определений

Демонстрационные

ELCUT

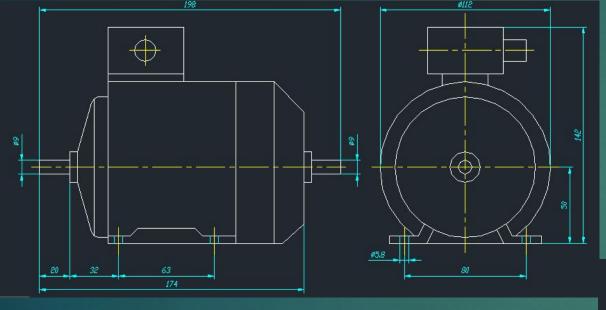
Программа для моделирования магнитных полей

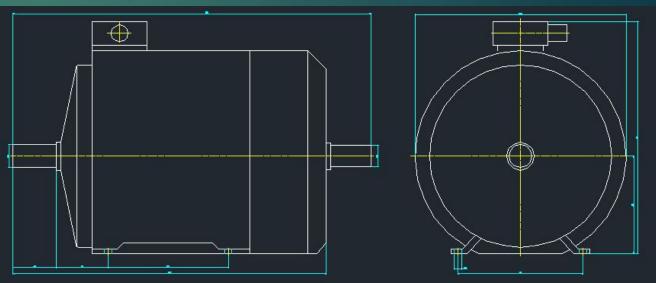


Вычисления проводятся для исследования зависимости механического момента

(на 1 м длины) в зависимости от толщины ярма и плотности тока (а также других характеристик материала). Можно наблюдать эффект насыщения для механического момента с ростом толщины ярма и деформацию линий магнитной индукции с ростом плотности тока. Эти данные могут быть полезны при проектировании двигателя.

ELCUT


J, / O IVIIVI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	3.4
3	10.1
5	16.6
7	22.7

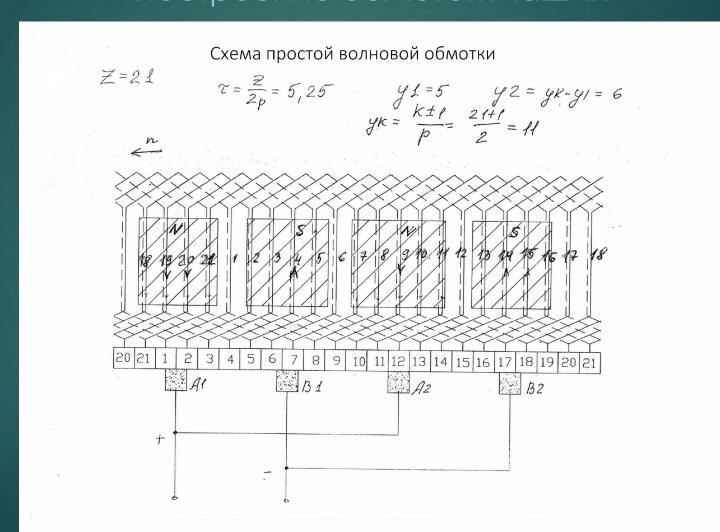

Зависимость электромагнитного момента от

голщины ярма s:	S, MM	М, Н∙м
	1	2.6
	2	4.8
	3	6.8
	4	8.6
	7.4	11.4

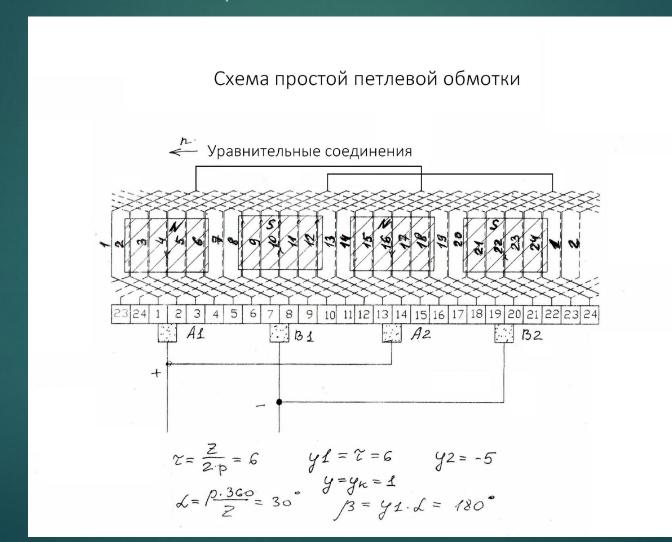
AutoCAD


Демонстрирование чертежей электрических машин

AutoCAD


Демонстрирование 3D моделей эл. машин

Расчетные


AutoCAD

Построение обмоток машин

AutoCAD

Построение обмоток машин

MathCad

Программное обеспечение для инженерных вычислений

«Использование PTC Mathcad позволяет писать примечания к расчетам вдвое быстрее, но реальная ценность этого приложения в возможности проверки и отладки. В среднем этот этап занимает при использовании приложения PTC Mathcad в три раза меньше времени, чем в случае применения Microsoft Excel, что является явным повышением производительности труда»

MathCad

Расчёт магнитной цепи машины

№	Расчетная	Для следующих значений э.д.с. в о.е.						
	величина	1.0	0.4	0.6	0.8	0.9	1.15	1.25
1	E_a , B							
2	$\Phi_{_{\it 5}}$, B6						.83	
3	$B_{\scriptscriptstyle \mathcal{S}}$,Тл		2 2					
4	F_{s} , A							
5	B'_{z1} , Тл					5		- 5
6	B_{z2}^{\prime} , Тл							
7	B'_{z3} , Тл							
8	H_{z1} , A/M		6 6				16	
9	H_{z2} , A/M							
10	H_{z3} , A/M							
11	H_z , A/M							
12	F_z , A		3			,	,,,	
13	B_a , Тл							
14	H_a , A/M						20	- 20
15	F_a , A							
16	$B_{\scriptscriptstyle m}$, Тл							
17	$H_{_{ m M}}$, A/M							
18	F_m , A		50				38	20
19	$B_{\scriptscriptstyle R}$, Тл							
20	$H_{_{\mathfrak{A}}}$, A/M						5	
21	$F_{\scriptscriptstyle R}$, A		5 6			9	16	- 77
22	F_B , A							
23	k_{μ}							

MathCad

Расчёт магнитной цепи машины

Исходные данные

P := 16.2	Da := 0.245	1m := 0.120
U:= 230	Di := 0.06	hm := 96
n:= 1460	1a:= 0.120	hя := 27.5
p := 2	$\delta := 0.0015$	$1\pi := 235$
a:= 1	z := 35	Ke := 1.05
k:= 139	$h\pi := 0.00362$	Kca := 0.93
$w := 2$ $b\pi := 0.0085$	d в := 0.022	
		Kct := 0.97
$\alpha := 0.66$	bm := 80	17.74.6

Часть расчётов

СПАСИБО ЗА ВНИМАНИЕ