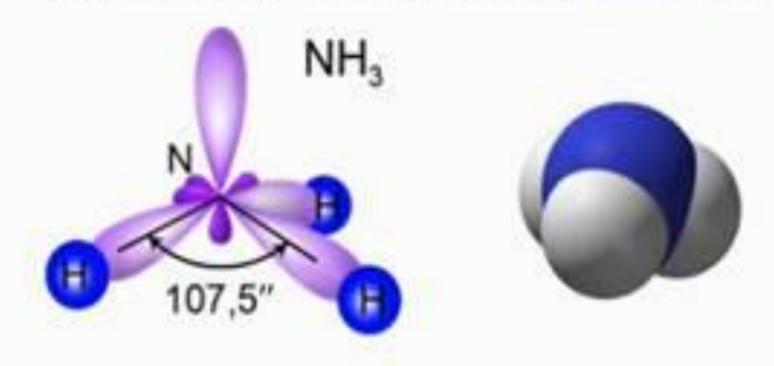
Характеристики ковалентной связи

- Длина связи
- Энергия связи
- Полярность связи
- От чего зависят эти характеристики?

• Расположите вещества в порядке возрастания длины связи:

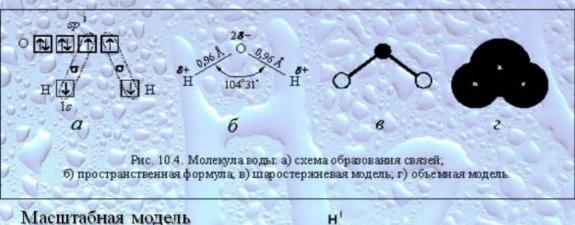
H2, Br2, Cl2, I2.


- Определите кратность связи в молекулах: F2, O2, N2.
- Определите число сигма- и пи- связей в этих молекулах.
- Как изменяется полярность связи в ряду:
 HCI, HBr, HI

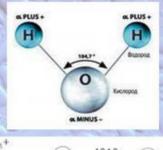
Свойства ковалентной связи

- Что называется насыщаемостью ковалентной связи? От чего она зависит?
 Является ли ионная связь насыщаемой?
- Что такое направленность ковалентной связи? От чего зависит направление связи?
 Является ли ионная связь направленной?
- Что такое гибридизация? Почему возникла необходимость гибридизации орбиталей?

- Типы гибридизации. От чего зависит и как определить тип гибридизации?
- Определите тип гибридизации, валентный угол и форму молекулы в пространстве:


Строение молекулы аммиака NH₃

Расположение орбиталей Масштабная модель


Строение молекулы воды

Молекула воды состоит из двух атомов водорода и одного — кислорода, которые соединены между собой ковалентной связью.

молекулы Н2О

2s 11 5p³

Аномальные свойства воды объясняются существованием в ней водородных связей между молекулами.

Как и почему в ряду соединений:

 $HF - H_2O - H_3N$

Изменяется

Длина связи

Энергия связи

Прочность связи

Полярность связи

Как и почему изменяется в ряду соединений:

 $H_2O - H_2S - H_2Se$

Длина связи

Энергия связи

Прочность связи

Полярность связи

Определите тип гибридизации центрального атома и форму в пространстве молекулы

Определите тип гибридизации центрального атома и форму в пространстве молекулы

CO₂