

АНЕМИИ ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ (ЖДА) В-12, ФОЛИЕВО-ДЕФИЦИТНАЯ АНЕМИЯ

Максикова Татьяна Михайловна, к.м.н., ассистент кафедры пропедевтики внутренних болезней

ОПРЕДЕЛЕНИЕ АНЕМИИ

- □ Анемия в переводе с греческого означает «бескровие» (ап без, haima кровь).
- □ Более точно отражает сущность указанных состояний термин «малокровие».

Анемии (anaemiae) — клинико-лабораторный синдром, характеризующийся снижением уровня гемоглобина, эритроцитов и гематокрита в единице объема крови

Беременные женщины

- 1) гемоглобин менее 110 г/л
- 2) гематокрит менее 33%

ЭПИДЕМИОЛОГИЯ АНЕМИЙ

- По данным ВОЗ анемией страдают около 2 млрд.
 жителей Земли.
- 80-90% этих состояний связано с дефицитом железа (железодефицитные синдромы), а более половины это железодефицитные анемии.
- Железодефицитные анемии занимают первое место среди 38 самых распространенных заболеваний человека.
- ❖ Железодефицитная анемия может быть выявлена у 178886000 жителей Земли, а железодефицитные состояния – у 3580000000.
- Скрытый дефицит железа наблюдается у 30%женщин, в некоторых регионах нашей страны до

Распространенность железодефицитной анемии в мире по данным ВОЗ (2008 г.)

Население	Распространенность анемии (%)
Дети дошкольного возраста	47,4
Детей школьного возраста	25,4
Беременные женщины	41,8
Небеременные женщины	30,2
Люди	12,7
Пожилые люди	23,9
Общая численность населения	24,8

КЛАССИФИКАЦИЯ АНЕМИЙ ПО ПАТОГЕНЕЗУ (D.Natan; F.Oski,

NB!!! Всего в настоящее время выделяют более 50 разновидностей анемий.

І. Анемии, обусловленные острой кровопотерей

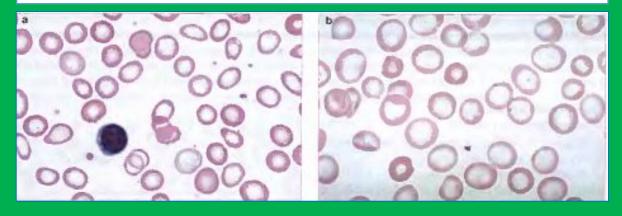
- II. Анемии, возникающие в результате дефицитного эритропоэза
- 1) За счёт нарушенного созревания (микроцитарные)
 - Железодефицитные
 - Нарушение транспорта железа
 - Нарушение утилизации железа
 - Нарушение реутилизации железа
- 2) За счет нарушения дифференцировки эритроцитов
 - А/гипопластическая анемия (врожденная, приобрет.)
 - Дизэритропоэтические анемии
- 3) За счет нарушения пролиферации клетокпредшественниц эритропоэза (макроцитарные)
 - В12-дефицитнве
 - Фолиево-дефицитные

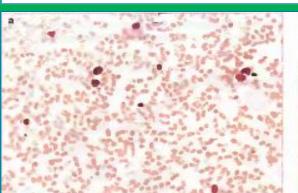
- III. Анемии, возникающие вследствие повышенной деструкции эритроцитов
- 1) Приобретенный гемолиз (неэритроцитарные причины)
 - Аутоиммунный
 - Неиммунный (яды, медикаменты, и др.)
 - Травматический (искусственные клапаны, гемодиализ)
 - Клональный (ПНГ)
- 2) Гемолиз, обусловленный аномалиями эритроцитов
 - Мембранопатии
 - Ферментопатии
 - Темоглобинопатии
- 3) Гиперспленизм внутриклеточный гемолиз (сначала снижается уровень тромбоцитов, анемия развивается

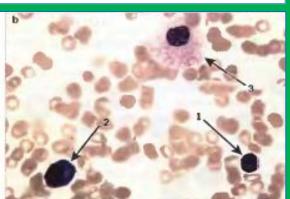
КЛАССИФИКАЦИЯ АНЕМИЙ ПО ЭРИТРОЦИТАРНЫМ ИНЛЕКСАМ

ЖДА – железодефицитная анемия; АХЗ – анемия хронических заболеваний; АИГА – аутоиммунные гемолитические анемии

КЛАССИФИКАЦИЯ АНЕМИЙ ПО СТЕПЕНИ ТЯЖЕСТИ (ВОЗ)


Степени тяжести анемии	Уровень Hb
легкая	119 - 90
средняя	89 - 70
тяжелая	69 и ниже


КЛАССИФИКАЦИЯ АНЕМИЙ ПО ЦВЕТОВОМУ ПОКАЗАТЕЛЮ, ЦП = $(HB \Gamma/J \times 0.03)/9P$


- **1. НОРМОХРОМНАЯ АНЕМИЯ ЦП 0.85 1.05**
- **2.** ГИПОХРОМНАЯ АНЕМИЯ ЦП < 0.85
- **3.** ГИПЕРХРОМНАЯ АНЕМИЯ ЦП >1.05

КЛАССИФИКАЦИЯ АНЕМИЙ ПО СТЕПЕНИ РЕГЕНЕРАЦИИ КОСТНОГО МОЗГА:

- **1.** ГИПОРЕГЕНЕРАТОРНАЯ (RT <0,2%)
- **2.** ГИПЕРЕГЕНЕРАТОРНАЯ (RT >2%)
- **3. НОРМОРЕГЕНЕРАТОРНАЯ** (RT 0.2 2%)

КЛИНИКА АНЕМИЙ

СИНДРОМЫ ПРИ АНЕМИЯХ

- 1. Анемический синдром.
- 2. Синдром сидеропении.
- 3. Синдром гемолиза.
- 4. Синдромы желудочно-кишечных нарушений и полинейопатии, связанные с анемией и дефицитом витамина В12.
- Синдром гиперспленизма.
- 6. Синдром перегрузки железом (сидероахрестический).
- 7. Синдром неэффективного эритропоэза состояние, при котором активность костного мозга увеличена, но выход созревших эритроцитов в кровь снижен изза повышенного разрушения в костном мозге эритробластов.
- 8. Синдром дизэритропоэза наличие морфологических признаков нарушенного созревания эритроцитов в костном мозге.

ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ, ОПРЕДЕЛЕНИЕ И

ЭТИОПОГИЯ

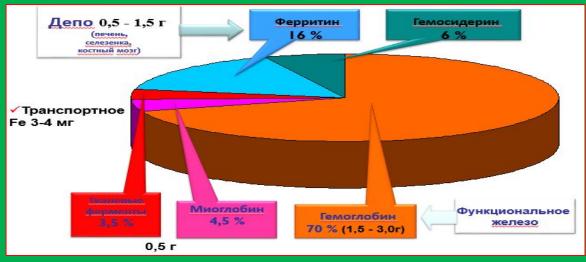
ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ - СИНДРОМ, ХАРАКТЕРИЗУЮЩИЙСЯ СНИЖЕНИЕМ НАПОЛНЕНИЯ ГЕМОГЛОБИНА ЖЕЛЕЗОМ С ПОСЛЕДУЮЩИМ УМЕНЬШЕНИЕМ СОДЕРЖАНИЯ ГЕМОГЛОБИНА В ЭРИТРОЦИТЕ С УГНЕТЕНИЕМ ЭРИТРОПОЭЗА ИЗ-ЗА ДЕФИЦИТА ЖЕЛЕЗА, РАЗВИВАЮЩЕГОСЯ В РЕЗУЛЬТАТЕ НЕСООТВЕТСТВИЯ МЕЖДУ ПОСТУПЛЕНИЕМ И РАСХОДОМ

ПОТЕРИ ЖЕЛЕЗА, ОБУСЛОВЛЕННЫЕ КРОВОТЕЧЕНИЯМИ ПОТРЕБЛЕНИЕ, ПОТЕРЯ) ЖЕЛЕЗА.
ПЕРЕРАСПРЕДЕЛЕНИЕ УЖЕ
УСВОЕННОГО ЖЕЛЕЗА МЕЖДУ
КЛЕТКАМИ, НЕ
СОДЕРЖАЩИМИ ГЕМОГЛОБИН И
МИОГЕОБИН

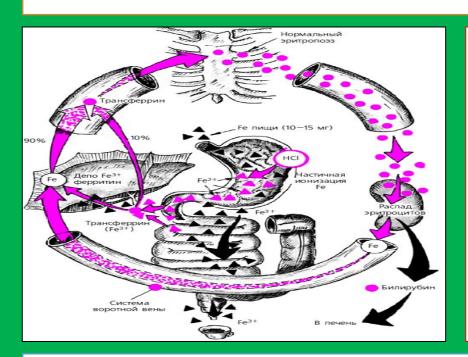
АЛИМЕНТАРНАЯ НЕДОСТАТОЧНОСТЬ

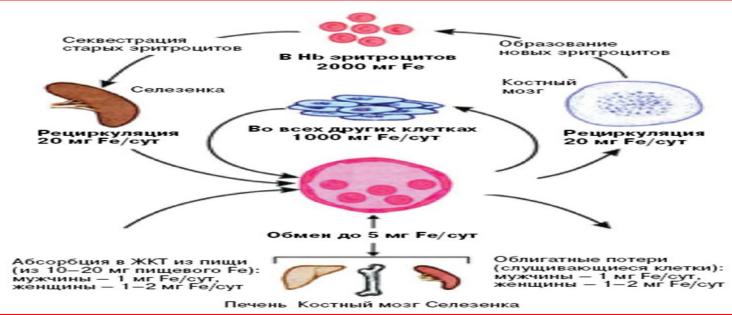
ОСНОВНЫЕ ПРИЧИНЫ РАЗВИТИЯ ЖЕЛЕЗОДЕФИЦИТНЫХ СОСТОЯНИЙ

КОНКУРЕНТНОЕ ПОТРЕБЛЕНИЕ ЖЕЛЕЗА В КИШЕЧНИКЕ


СМЕШАННАЯ (ПОВЫШЕННОЕ РАСХОДОВАНИЕ С НЕДОСТАТОЧНЫМ ПОСТУПЛЕНИЕМ)

УСИЛЕННОЕ ПРИ АКТИВИЗАЦИИ ЭРИТРОПОЭЗА


ОБМЕН ЖЕЛЕЗА В ОРГАНИЗМЕ


- Железо входит в состав гемоглобина (гем), важнейшего элемента обеспечения тканей кислородом
- Внутриклеточным ферментам необходимо железо (каталазы, пероксидазы)
- Железо участвует в синтезе ДНК и регуляции клеточного цикла (рибонуклеотид редуктаза)
- Миоглобин (содержит гем) необходимый компонент поперечнополосатых мышц
- Железо, как компонент цитохрома (гем; в том числе цитохром Р450), ответственно за электронный транспорт в дыхательной цепи
- ЦНС: железо увеличивает чувствительность дофаминовых рецепторов возможно влияет на миелинизацию нервных волокон
- Железо влияет на иммунитет: участвует в пролиферации Т лимфоцитов
- Считается, что железо модулирует эффекты инсулина.

ОСНОВНЫЕ ЭТАПЫ ОБМЕНА ЖЕЛЕЗА В ОРГАНИЗМЕ

- 1. Физиологическое всасывание железа из пищи ограничено, у мужчин ежедневно приблизительно всасывается 1-1,5 мг; у женщин 1-1,3 мг.
- 2. При повышенных потребностях может всосаться 2-2,5 мг.
- 3. Физиологические потери у мужчин с мочой, калом, потом, слущивающимся эпителием не превышает 1 мг, у женщин к этим потерям прибавляются потери железа во время менструации, беременности, родов и лактации, поэтому у мужчин ЖДА всегда должна вызывать настороженность.
- 4. За одну менструацию женщина теряет 30-40 мл крови (1,5-1,7 мг железа), при обильных менструациях потребность железа возрастает до 2,5-3 мг/сутки и возникает дефицит 0,5-1 мг/сутки, 15-20 мг. В месяц, 180-240 мг в год; 1,8-2,4 грамма в течение 10 лет.
- 5. При каждой беременности, сопровождающейся родами и лактацией, женщина теряет не менее 700-800 мг. железа.

МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ ОБМЕНА ЖЕЛЕЗА В

ОРГАНИЗМЕ

- ✔ Концентрация гемоглобина, число эритроцитов, гематокрит, эритроцитарные индексы (содержание и концентрация гемоглобина в эритроцитах, размер эритроцитов)
- Процент гипохромных эритроцитов
- Содержание гемоглобина в ретикулоцитах
- Концентрация свободных протопорфиринов (цинкпротопорфирина) в эритроцитах
- Сидеробласты костного мозга, сидероциты периферической крови

ТКАНЕВОЙ ФОНД ЖЕЛЕЗА Определение активности железосодержащих и железозависимых ферментов (пероксидаза, цитохромы, каталаза)

ГЕМОГЛОБИНОВЫ

XELE3

ФОНД

- ✓ Железо сыворотки крови (СЖ)
- Трансферрин сыворотки крови
- Общая железосвязывающая способность сыворотки крови (ОЖСС)
- Коэффициент насыщения трансферрина железом (КНТ)
- Концентрация растворимых рецепторов трансферрина

- ✓ Ферритин сыворотки крови
- ✓ Десфераловы й тест
- ✓ Определение окрашиваемо го железа в макрофагах костного

мозга

ПАТОГЕНЕЗ ДЕФИЦИТА ЖЕЛЕЗА

- 1. Организм только в незначительной степени может регулировать поступление железа из пищи и не контролирует его расходование.
- 2. При отрицательном балансе обмена железа (1) вначале расходуется железо из депо (латентный дефицит железа), затем возникает (2) тканевой дефицит железа, проявляющийся нарушением ферментативной активности и дыхательной функции в тканях, и только позже (3) развивается ЖДА.

СТАДИИ ДЕФИЦИТА ЖЕЛЕЗА

- 1. Прелатентный дефицит железа (дефицит резервного фонда железа);
- Латентный дефицит железа (дефицит резервного, тканевого и транспортного фондов железа);
- 3. Железодефицитная анемия (дефицит резервного, тканевого, транспортного и гемоглобинового фондов железа).

КЛИНИКА: ОБЩЕАНЕМИЧЕСКИЙ СИНДРОМ

Механизм: гемическая гипоксия, падение способности крови транспортировать кислород и углекислый газ изза низкого содержания гемоглобина.

Основные жалобы:

- слабость,
- утомляемость,
- сонливость,
- головокружение,
- головные боли,
- шум в ушах,
- ♦ шум в уш♦ сердцеби• одышка. сердцебиение,

Осмотр:

бледность кожных покровов с алебастровым или зеленоватым оттенком (хлороз).

Объективное обследование:

- тахикардия;
- ❖ гипотония;❖ шум волчка на яремных венах;
- систолический шум на верхушке сердца.

Дополнительное обследование:

ЭКГ – «ишемические» изменения.

ЭХО-КГ – снижение УО и МО: «анемическое сердце».

КЛИНИКА: СИДЕРОПЕНИЧЕСКИЙ СИНДРОМ

Механизм: снижение активности тканевых железосодержащих ферментов, нарушение синтеза ДНК

Основные жалобы:

- сухость кожи, ломкость волос и ногтей;
- затруднение глотания сухой и твердой пищи, поперхивание;
- жжение и боль в языке;
- желудочная диспепсия;
- мышечная слабость, сниженная толерантность к физической нагрузке, непроизвольное мочеиспускание при кашле, чихании;
- извращение вкуса (желание есть мел, зубной порошок, уголь, глину, сырой мясной фарш) и пристрастие к необычным запахам (ацетон, керосин, краски и т.д.)

Осмотр:

- сухость и образование трещин на коже;
- «ложкообразные» ногти «койлонихии» с повышенной ломкостью и искривлением;
- тусклость и выпадение волос;
- ангулярный стоматит, глоссит с атрофией сосочков.

ИНФЕКЦИОННО-ВОСПАЛИТЕЛЬНЫЙ СИНДРОМ

Fe влияет на целый ряд показателей иммунной системы (пролиферация лимфоцитов, способность лимфоцитов нейтрализовать антигены).

Дефицит Fe может ослабить уже

КЛИНИКА: ГЕМАТОЛОГИЧЕСКИЙ СИНДРОМ - ОАК

Снижение концентрации гемоглобина:

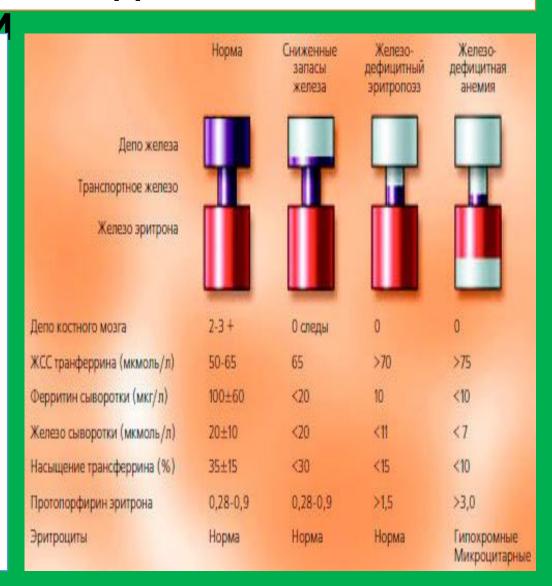
- < 130 г/л у мужчин (норма 130-160 г/л);
- < 120 г/л у женщин (норма 120-140 г/л);
- < 110 г/л у беременных женщин.

Снижение количества эритроцитов:

- $<4,0*10^{12}$ /л у мужчин (норма 4,1-5,2*10¹²/л);
- $< 3,5*10^{12}/л$ у женщин (норма 3,7-4,9*10¹²/л).

картина мазка крови у больных ЖДА гипохромные эритроциты микроциты

Нарушение биосинтеза гемоглобина в эритроцитах характеризуется:


- 1) снижением среднего содержания гемоглобина в эритроците (ССГЭ или МСН) < 27 пг (норма 27-35 пг) или снижением величины ЦП < 0,8 (норма 0,81-1,05),
- 2) снижением средней концентрации гемоглобина в эритроците (СКГЭ или МСНС) < 310 г/л (норма 329-345 г/л),
- 3) уменьшением среднего объема эритроцитов (СЭО или MCV) < 80 фл (норма 80-104 фл);
- 4) количество ретикулоцитов, лейкоцитов, тромбоцитов в норме;
- 5) СОЭ умеренно ускорена;
- 6) в мазке крови гипохромия, микроцитоз, анизоцитоз, пойкилоцитоз эритроцитов.

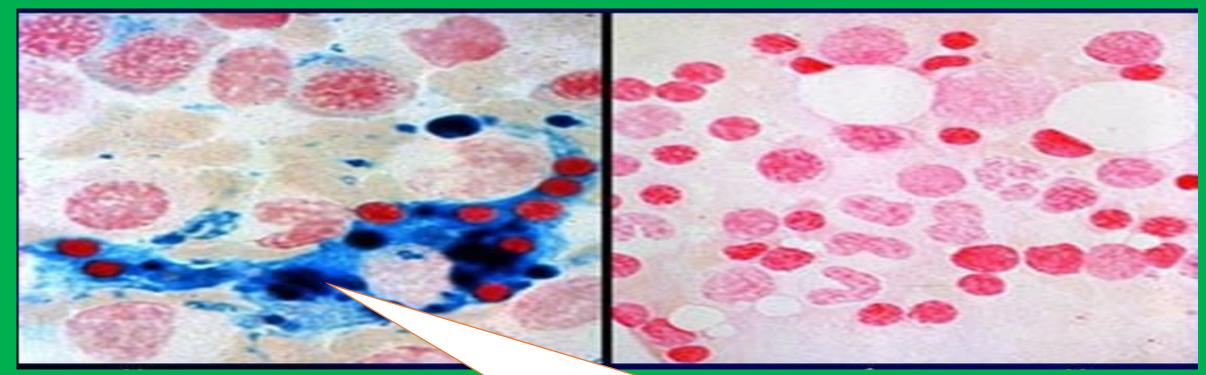
КЛИНИКА: ГЕМАТОЛОГИЧЕСКИЙ СИНДРОМ – БИОХИМИЯ

KP()R

🚺 Нарушение обмена железа:

- повышение общей железосвязывающей способности сыворотки крови (ОЖСС) > 67 мкм/л (норма 42,3-66,7 мкм/л);

ДИАГНОСТИКА ЛАТЕНТНОГО ДЕФИЦИТА ЖЕЛЕЗА

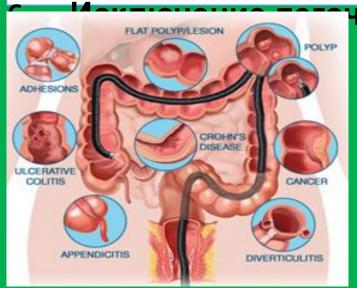

- Клинические признаки отсутствуют или значительно менее выражены, чем у больных ЖДА
- Показатели периферической крови (гемоглобин, число и морфология эритроцитов, лейкоцитов, тромбоцитов в норме); возможен лейкоцитоз и тромбоцитоз у беременных, СОЭ ускорена
- Нарушение обмена железа:
 - ✓ снижение концентрации СЖ < 12 мкм/л (норма 12-26 мкм/л);</p>
 - повышение величины ОЖСС > 67 мкм/л (норма 42,3-66,7
 - мкм/л);
 - ✓ повышение величины ЛЖСС > 50 мкм/л (норма 22,2-49,6 мкм/л);
 - снижение КНТЖ < 20% (норма 20,1-49,4%);</p>

ИЗМЕНЕНИЕ В КОСТНОМ МОЗГЕ ПРИ ЖДА

УМЕНЬШЕНИЕ КОЛИЧЕСТВА СИДЕРОБЛАСТОВ – ЭРИТРОКАРИОЦИТОВ, СОДЕРЖАЩИХ ЖЕЛЕЗО (НОРМА – 20-40% ЭРИТРОКАРИОЦИТОВ КОСТНОГО МОЗГА СОДЕРЖАТ ГРАНУЛЫ

ЖЕЛЕЗА)

НОРМА ПАТОЛОГИЯ

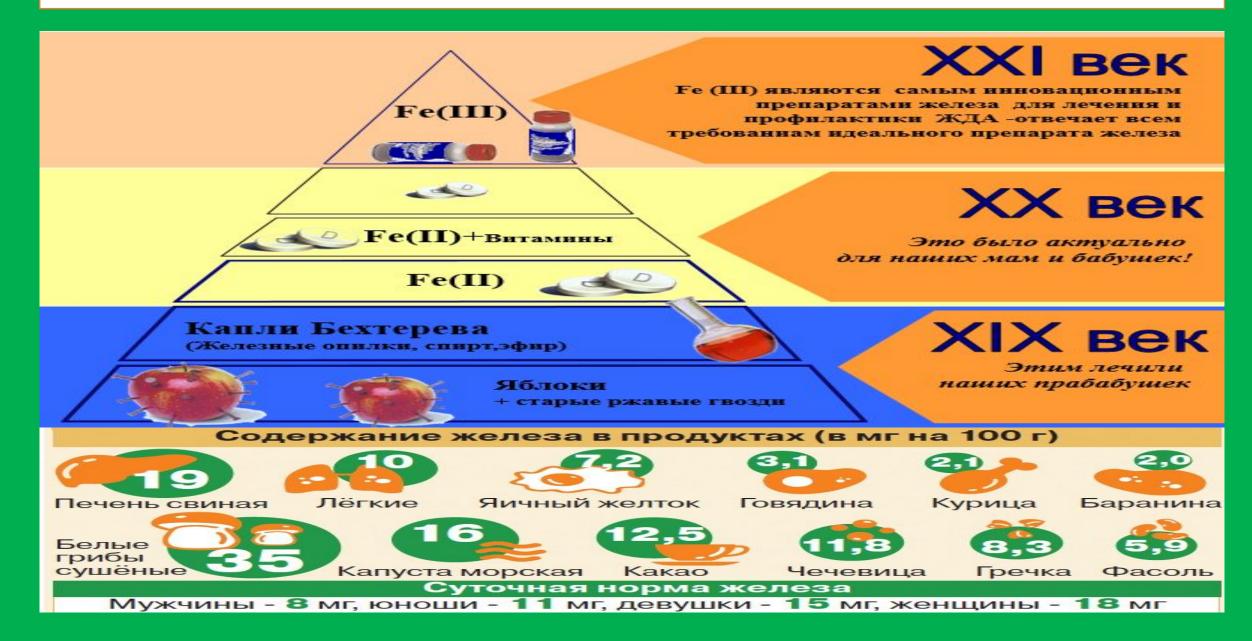


СИДЕРОФАГИ, СИДЕРОБЛАСТЫ, СОДЕРЖАЩИЕ ЖЕЛЕЗО ОКРАШЕНЫ В СИНИЙ ЦВЕТ

ДОПОЛНИТЕЛЬНЫЕ МЕТОДЫ ОБСЛЕДОВАНИЯ ДЛЯ ДИАГНОСТИКИ ПРИЧИН ЖДА

Исключение кровотечения:

- 1. ФГДС, ректороманоскопия, колоноскопия.
- 2. Анализ кала на скрытую кровь.
- 3. Осмотр гинеколога.
- 4. Консультация проктолога.
- Консультация уролога.


Важнейшие причины желудочно-кишечных кровотечений

Язвенная болезнь	Желудка 12-перстной кишки
Опухоли	Полипы Рак желудка Рак толстого кишечника
Прочие причины	Грыжа пищеводного отверстия диафрагмы – эзофагит – грыжевой мешок Геморрой Дивертикулез Ишемический колит Сосудистые нарушения
Лекарственные препараты (особенно у пожилых людей)	Нестероидные противовоспалительные препараты Антикоагулянты

ПРИНЦИПЫ ЛЕЧЕНИЯ ЖДА

- 1. Диета: лучше всего всасывается железо, входящее в состав гема, поэтому больным ЖДА прежде всего рекомендуются мясные продукты.
- 2. Невозможно устранить ЖДА без препаратов железа, так как всасывание железа из пищи ограничено (максимум 2,5 мг/сутки). Из препаратов железа всасывается в 15-20 раз больше.
- 3. ЖДА следует лечить препаратами для перорального приема, так как парентеральные препараты могут вызывать тяжелые аллергические реакции, при внутримышечном введении инфильтраты и абсцессы, при ошибочном диагнозе ЖДА отложение железа в печени, поджелудочной железе, мышце сердца, надпочечниках, половых органах (сидероз).
- 4. Внутрь назначают препараты, которые по возможности не вызывают диспепсические расстройства.
- 5. Препараты железа лучше назначать до еды и сочетать с небольшими дозами аскорбиновой кислоты, так как она улучшает всасывание железа.
- 6. Препараты железа в терапевтической дозе принимают до восстановления уровня гемоглобина (120 г/л и более). В последующем лечение продолжается еще 1-3 месяца до восполнения запасов железа в депо (до нормализации концентрации сывороточного ферритина), при этом суточная доза препарата уменьшается в 2-3 раза (50-100 мг элементарного железа).
- 7. Нет смысла дополнительно назначать витамины B12, B6, фолиевую кислоту.
- 8. Инъекционно железо вводится только по показаниям (обострение ЯБЖ , резекция и воспаление тонкого кишечника).
- 9. При ЖДА без жизненных показаний не стоит прибегать к переливанию крови (к жизненным показаниям относятся тяжелое общее состояние больного, нарушения гемодинамики, подготовка к оперативному вмешательству, уровень гемоглобина ниже 40-50 г/л).

ЛЕЧЕНИЕ ЖДА – СОВРЕМЕННЫЕ ТЕНДЕНЦИИ

В12-ДЕФИЦИТНАЯ И ФОЛИЕВО ДЕФИЦИТНАЯ АНЕМИЯ (ПЕРНИЦИОЗНАЯ АНЕМИЯ АДИССОНА-БИРМЕРА): ОПРЕДЕЛЕНИЕ И

ЭПИЛЕМИОПОГИЯ

Витамин В 12 и фолиеводефицитные (мегалобластные) анемии - группа приобретенных и наследственных заболевании развивающихся из-за нарушения синтеза ДНК и РНК в кроветворных клетках, прежде всего по

линии эритропоэза.

ОСНОВНЫЕ СВЕДЕНИЯ О ВИТАМИНЕ В-12

- Содержание в организме: 2-5 мг.
- Запас: 3-5 лет.
- Суточные потери: 2-5 мкг.
- Суточная потребность: 2-7 мкг.
- Содержится только в пище животного происхождения: мясе (до 2,0 мкг\100 г.), печени, почках (100 мкг\100 г), яйцах, молочных продуктах (прочно связан с белком кобалафилином).

Витамин В12 -дефицитные анемии относятся к <u>редким</u> заболеваниям, <u>особенно в детском</u>, <u>юношеском</u> и <u>молодом</u> возрасте.

- 7-10 человек на 100 тыс. населения,
- ✓ однако для лиц старше 40 лет она возрастает до 25 на 100 тыс.,
- ✓ после 60 лет встречается у каждого 50-го человека,
- ✓ после 70 лет у каждого 15-го (около 7%).

В12-ДЕФИЦИТНАЯ И ФОЛИЕВО ДЕФИЦИТНАЯ АНЕМИЯ (ПЕРНИЦИОЗНАЯ АНЕМИЯ АДИССОНА-БИРМЕРА): ЭТИОЛОГИЯ

НАРУШЕНИЕ СЕКРЕЦИИ ГАСТРОМУКОПРОТЕИНА (ВНУТРЕННЕГО ФАКТОРА КАСТЛА), КОТОРЫЙ ВЫРАБАТЫВАЕТСЯ В СЛИЗИСТОЙ ОБОЛОЧКЕ ЖЕЛУДКА И СПОСОБСТВУЕТ ВСАСЫВАНИЮ ВИТАМИНА В12 В ДПК НАБЛЮДАЕТСЯ ПРИ АТРОФИЧЕСКИХ ГАСТРИТАХ, РЕЗЕКЦИЯХ, ОПУХОЛЯХ, ТОКСИЧЕСКИХ, АУТОИММУННЫХ ОРАЖЕНИЯХ СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА.

ПРИЧИНЫ СНИЖЕНИЯ ВИТАМИНА В12 – ВНЕШНЕГО ФАКТОРА КАСЛА

НАРУШЕНИЯ В

ВИТАМИНА В-12 ПРИ ПОРАЖЕНИЯХ ТОНКОЙ КИШКИ (ХРОНИЧЕСКИЕ ЭНТЕРИТЫ, ЦЕЛИАКИЯ, ТРОПИЧЕСКАЯ СПРУ, РЕЗЕКЦИЯ КИШКИ, ОПУХОЛИ ВОСХОДЯЩЕГО ОТДЕЛА ТОЛСТОЙ КИШКИ НАРУШЕНИЕ
ТРАНСПОРТА
ВИТАМИНА В-12 ОТ
КИШЕЧНИКА К
КОСТНОМУ МОЗГУ
(ОТСУТСТВИЕ ИЛИ
НЕДОСТАТОК
ТРАНСКОБАЛАМИНА)

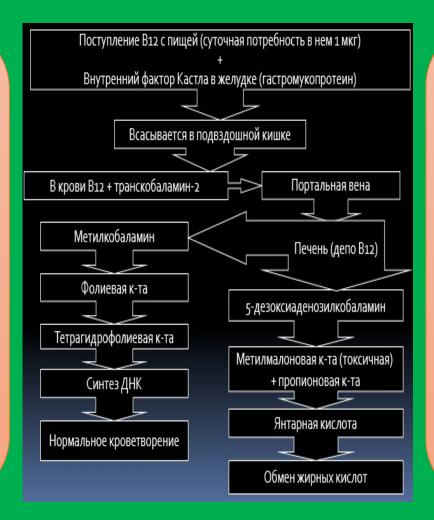
КОНКУРЕНТНОЕ
ПОГЛОЩЕНИЕ ВИТАМИНА
В-12 ПРИИНВАЗИИ ШИРОКИМ
ЛЕНТЕЦОМ,
ПАТОЛОГИЧЕСКОЙ
АКТИВАЦИИ КИШЕЧНОЙ
ФЛОРЫ, ДИВЕРТИКУЛЕЗЕ
ТОЛСТОЙ КИШКИ

ОБМЕН ВИТАМИНА В12- И ФОЛИЕВОЙ КИСЛОТЫ

- 1. Нормальное эритробластическое кроветворение осуществляется только с использованием витамина В12 и фолиевой кислоты.
- 2. Всасывание витамина В 12 происходит в присутствии гастромукопротеина, секретируемого фундальными железами желудка.
- 3. Витамин В12 образует с гастромукопротеином непрочный комплекс, способствующий адсорбции витамина В12 кишечной стенкой и всасыванию его преимущественно в подвздошной кишке.
- 4. Всосавшийся витамин В12 поступает в печень и активирует депонированную здесь фолиевую кислоту, которая

Участие витамина В12 и внутреннего фактора в кроветворении.

стимулирует процессы нормального созревания эритроцитов в костном мозге.


НАРУШЕНИЯ ОБМЕНА ВИТАМИНА В12- И ФОЛИЕВОЙ

ДЕФИЦИТ МЕТАКОБАЛАМИН

- 1. Участвует в синтезе ДНК, катализируя процесс перехода фолиевой кислоты в ее активную форму.
- 2. Недостаток приводит к нарушению синтеза ДНК в кроветворных клетках преимущественно в эритробластах, что сопровождается нарушением процессов деления и дифференциации клеток красного ряда.
- 3. В костном мозге появляются мегалобласты большие клетки с грубыми нитями хроматина, а также мегалоциты и макроциты большие эритроциты, насыщенные гемоглобином.

кислоты

ДВА КОФЕРМЕНТА ВИТАМИНА В-12

ДЕФИЦИТ ДЕЗОКСИАДЕНОЗИЛКОБАЛО

- 1. Нарушается обмен жирных кислот.
- 2. Происходит накопление пропионовой и метилмалоновой кислот.
- 3. Поражение задних и боковых рогов спинного мозга.
- 4. Нарушение образование миелина и повреждение аксонов.

ОСНОВНЫЕ ПРИЧИНЫ

Причины	Дефицит витамина В12	Дефицит фолиевой кислоты
Неадекватное поступление	Строгая вегетарианская диета (редко)	Недостаточное питание Быстрый рост Гемодиализ Недоношенность Вскармливание козьим молоком
Увеличенная потребность	Беременность Лактация	Острые инфекции Ранний возраст Хрон. гемолиз Беременность Лактация Целиакия
Нарушения абсорбции	Врожд.дефицит внутр.ф.Кастла Гастрэктомия С.Золлингера-Эллисона Панкреатит Б.Крона Резекция кишечника Паразитозы и др.	Заболевания тощей кишки амилоидоз Алкоголизм Лимфома, целиакия Дефицит дигидрофолатредуктазы Др.нарушения метаболизма фолатов

Прием ряда лекарственных препаратов:

- ингибиторов дегидрофолатредуктазы (метотрексат, сульфасалазин и др.);
- антиметаболитов (6-меркаптопурин; 6-тиогуанин; азатиоприн; ацикловир и др.); Ингибиторы редуктазы РНК (цитозар; гидрокссимочевина); Антиконвульсанты (дифенил; фенобарбитал); КОК (комбинированные оральные контрацептивы); ДРУГИЕ (метформин; неомицин; колхицин).

КЛИНИЧЕСКАЯ КАРТИНА

- Анемический синдром.
- 2. Желудочно-кишечные нарушения (анорексия, глоссит, снижение секреции в желудке).
- 3. Неврологические симптомы (В12) (парестезии, гипорефлексия, нарушения походки и др.).
- **4.** Гемолиз.
- Синдром неэффективного эритропоэза.
- Синдром дизэритропоэза.

БЛЕДНЫЕ и опии

КЛИНИКА: ФУНИКУЛЯРНЫЙ МИЕЛОЗ И ГАСТРОЭНТЕРОЛОГИЧЕСКИЙ СИНДРОМ

Неврологический синдром (фуникулярный миелоз): дистрофические процессы в заднебоковых столбах спинного мозга, связанные с накоплением токсичной метилмалоновой кислоты, проявляется: нарушением чувствительности конечностей, изменением походки и координации движений, одеревенением нижних конечностей, нарушением движений пальцев рук, атаксией, нарушением вибрационной чувствительности

Гастроэнтерологический синдром: снижение аппетита, массы тела, глоссит (гладкий красный язык – язык Хантера), тяжесть в эпигастрии, неустойчивый стул, ахлоргидрия, м.б.

КЛИНИКА: СИНДРОМ ГЕМОЛИЗА

причины:

- 1) дефекты оболочки эритроцитов
- 2) деструкция антителами
- 3) внутриклеточная деструкция
- 4) неиммунное повреждение

КЛИНИКА:

- 1) желтушное окрашивание склер, кожи
- 2) тёмная моча
- 3) увеличение печени и селезенки

ЛАБОРАТОРИЯ:

- возможно снижение НЬ и эритроцитов, увеличение СОЭ
- 2) ретикулоцитоз
- 3) повышение непрямого билирубина и ЛДГ (4-5)
- 4) уробилиноген в моче, стеркобилин в кале

МИЕЛОГРАММА: м.б. раздражение эритроидного

КЛИНИКА: ГЕМАТОЛОГИЧЕСКИЙ СИНДРОМ

ОБЩИЙ АНАЛИЗ КРОВИ

Макроцитарная

MCV > 100 фл

Гиперхромная

MCH > 100 пг MCHC > 36 г/л

Гипорегенераторная

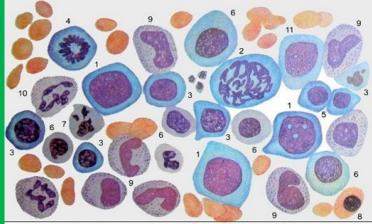
Rt < 0,2-0,5 %

В мазках крови:

Большие эритроциты – макроциты и мегалоциты 12-14 мкм в диаметре.

Дегенеративные формы эритроцитов с базофильной пунктацией и сохранившимися остатками ядра (тельца Жолли и Кольца Кебота)

Возможно:


Пейкопения, сдвиг «вправо», гиперсегментация ядер БИОХИМИЧЕСКИЙ АНАЛИЗ КРОВИ: увеличение непрямого билирубина.

КОСТНЫЙ МОЗГ: эритроидные элементы, представленные мегалобластами (клетки больших размеров с нежной структурой ядра, широкой базофильной цитоплазмой.

Элементы патологической регенерации эритроцитов

1 - эритроциты с кольцами Кебота; 2 - мегалобласт; 3 - эритроцит
с базофильной зернистостью; 4 - мегалоцит; 5 - эритроцит
с тельцами Жолли

Картина костного мозга при мегалобластной В12-дефицитной анемии
1 - промегалобласт; 2 - промегалобласт в состоянии митоза; 3 - базофильный мегалобласт; 4 - базофильный мегалобласт; 5 - базофильный нормоцит;
6 - полихроматофильный мегалобласт; 7 - полихроматофильный мегалобласт с почкующимся ядром; 8 - оксифильный мегалобласт; 9 - гигантский несегментированный нейтрофильный гранулоцит; 10 - гиперсегментированный нейтрофильный гранулоцит;

ПРИНЦИПЫ ЛЕЧЕНИЯ В-12 ДЕФИЦИТНОЙ АНЕМИИ

- 1. Полноценное питание.
- Дегельминтизация.
- 3. Витамин В₁₂ (цианкобаламин) 1000 мкг 1 раз в сутки в/м 4-5 недель.
- 4. Динамика лабораторных показателей: ретикулоцитарный криз на 5-8 день.
- 5. Пожизненные поддерживающие дозы витамина В₁₂ (500 мкг в месяц).
- 6. Эритроцитарная масса строго по жизненным показаниям;
- 7. Фолиевая кислота: 5-10 мг/сутки в течение 3-4 месяцев. Приём поддерживающих доз.