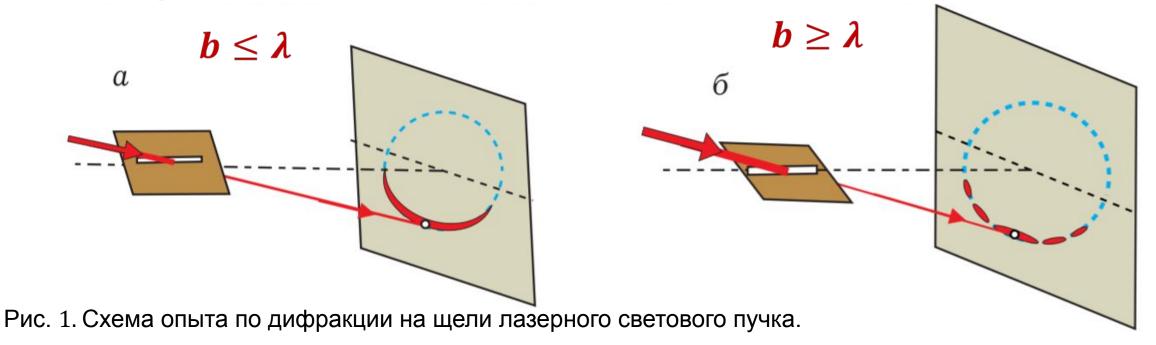

Вопрос по выбору на тему

Дифракционное колесо

Работу подготовила Кузнецова Светлана, студент Б06-905 группы

МФТИ 2020


Введение

Дифракция- совокупность явлений, наблюдаемых при распространении света в среде при ограничении или искажении волнового фронта.

При рассмотрении дифракции обычно ограничиваются дифракцией света в случае нормального падения, когда все вторичные источники «переизлучают» свет одновременно.

В своем вопросе по выбору я рассмотрю дифракцию при наклонном падении. Особенностью рассмотрения дифракции при наклонном падении света является то, что вторичные источники включаются в «переизлучение» вторичных волн не одновременно, а со скоростью, превышающей скорость света.

Дифракция при наклонном падении света на щель

Опыт показывает, что в этом случае свет после дифракции на щели можно представить как систему световых лучей, направленных вдоль образующих на поверхности половины конуса, а показанная на рисунке окружность на экране наблюдения является сечением поверхности этого конуса.

Гюйгенс-Френель: узкая щель -> цепочка точечных источников, излучающих вторичные волны в пространство за щелью.

Интерференция всех вторичных волн даёт в результате дифрагированный световой пучок.

Рассмотрим 2 параллельных луча падающей волны, которые выделяют произвольный отрезок АВ вторичных источников, и два луча дифрагированной волны, которые могут не лежать в плоскости рисунка и направлены в т.

HOERIOROHIAG D

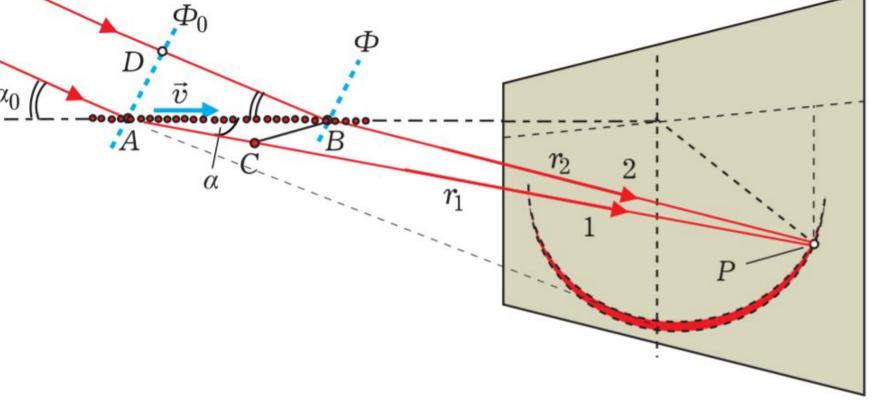
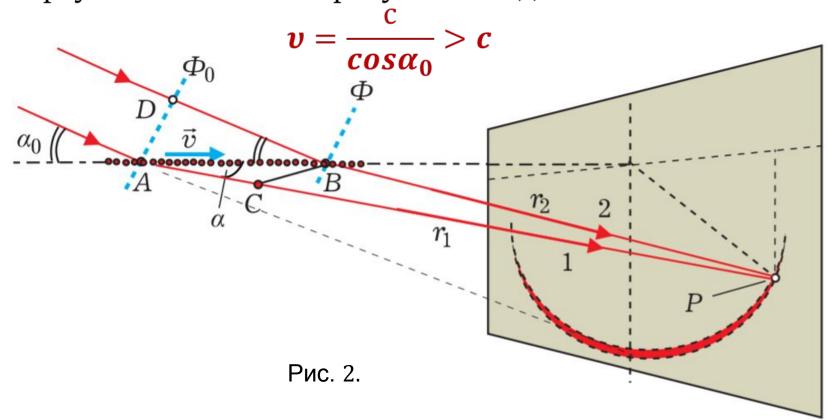



Рис. 2.

• Выберем одну из поверхностей равной фазы – волновой фронт Φ_0 . В случае наклонного падения вторичные источники излучают с запаздыванием по мере продвижения волновой поверхности со скоростью v на расстояние $AB = v \cdot \Delta t$ от положения Φ_0 до положения Φ через небольшой интервал времени.

Учитывая, что в воздухе световая волна движется со скоростью $c = 3 \cdot 10^8$ м/с, из прямоугольного треугольника ADB на рисунке находим:

«Включение» вторичных источников со скоростью υ накладывает ограничения на возможные направления распространения света за щелью.

Рассмотрим волны, возникающие в точке A в момент времени t_1 (волна 1) и в точке B в момент времени $t_2 = \Delta t + t_1$ (волна 2).

Пусть волны 1 и 2 приходят в точку наблюдения P в моменты времени τ_1 и τ_2 , проходя, соответственно, расстояния r_1 и r_2 . Разница во временах прихода волн в точку P:

$$\tau_1 = t_1 + \frac{r_1}{c} \quad \tau_2 = t_2 + \frac{r_2}{c}$$

$$\Delta \tau = (t_2 - t_1) - \frac{r_{1-} r_2}{c}$$

Если AB<< r1,r2; следовательно из рисунка видим, что $r_1 - r_2 \approx AB \cdot \cos \alpha = v_{\Delta} t \cos \alpha, \text{ где } \alpha - \text{ угол между щелью и лучом 1.}$

Тогда
$$\Delta au \cong \Delta t (1 - \frac{v}{c} cos \alpha)$$

Поскольку отрезок AB выбран произвольно, то и Δt тоже произвольно. Волны 1 и 2 будут интерферировать на экране и усиливать друг друга только если Δт=0, т.е. при условии:

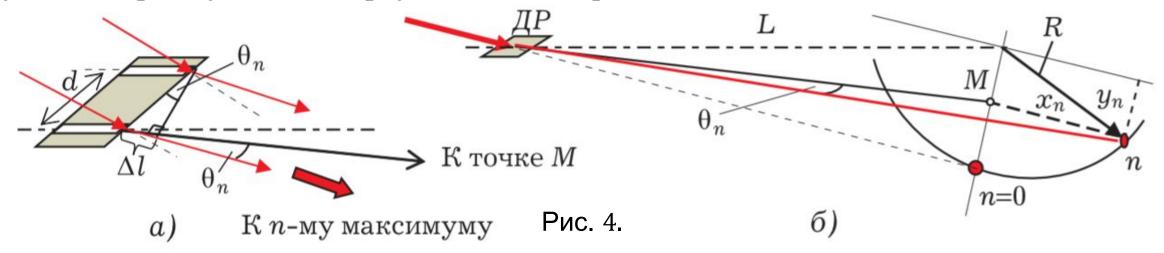
 $1 = \frac{v}{c} \cos \alpha$


Учитывая:

$$v = \frac{c}{cos\alpha_0}$$

Получим что для интерферирующих волн $\alpha = \alpha_0$

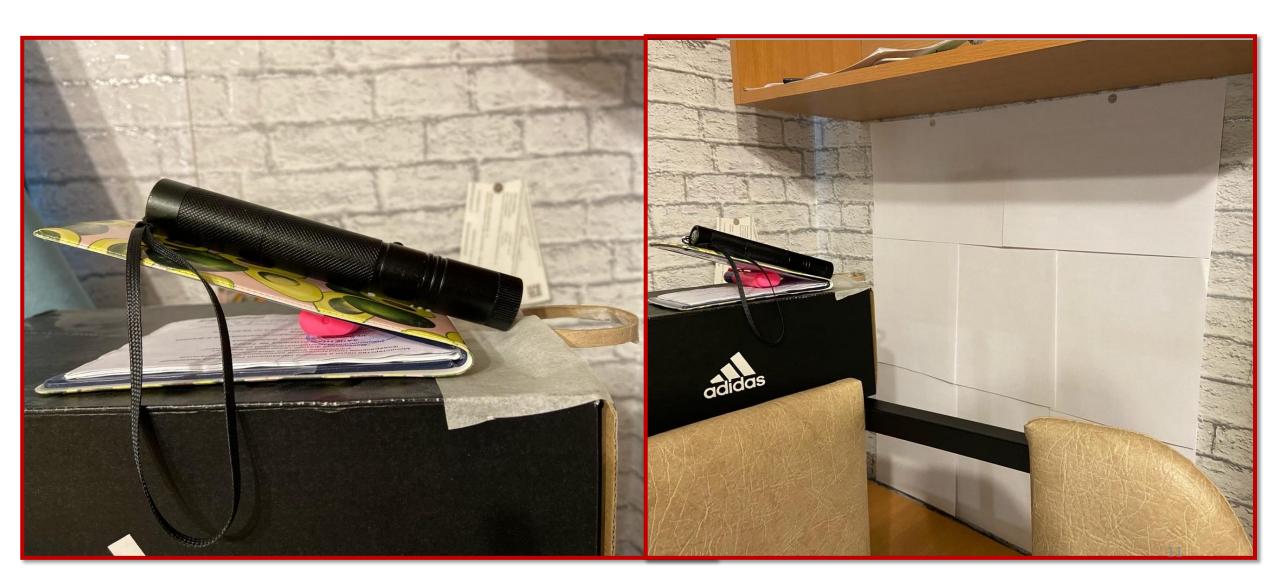
На экране, расположенном перпендикулярно направлению щели наблюдается дифракционная картина, в которой освещёнными оказываются только точки вблизи полуокружности – сечения упомянутой конической поверхности. Радиус полуокружности зависит от расстояния от экрана до щели.


Дифракция на решётке при скользящем падении лазерного излучения

Световые волны, дифрагированные на каждой из N щелей, распространяются вдоль образующих конуса и перекрываются. Верхняя часть дифракционной картины образуется при дифракции на отражение, нижняя часть при дифракции на прохождение света. В тех направлениях, для которых на разности хода Δl_n волн от соседних щелей укладывается целое число n длин волн, волны взаимно усиливаются при интерференции, и интенсивность увеличивается в N^2 раз.

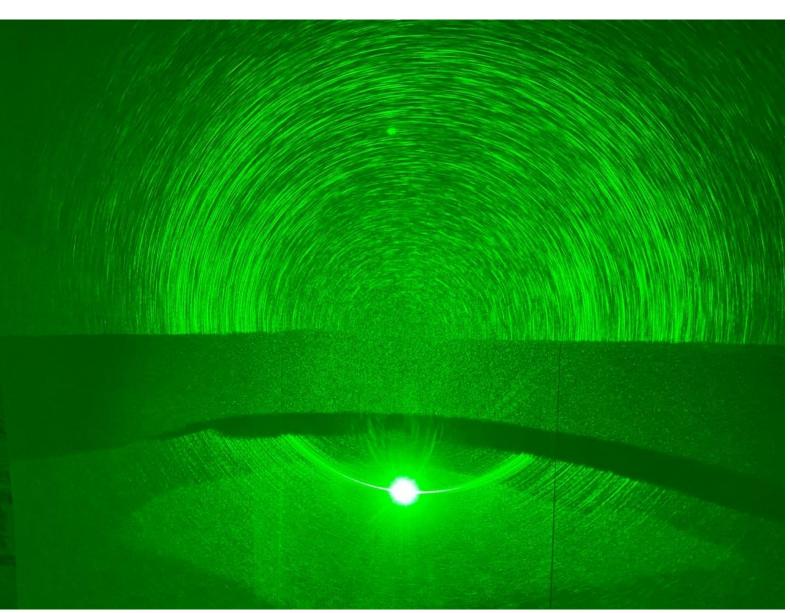
В соответствующих точках экрана наблюдения, находящихся на окружности радиуса $R = \sqrt{x_n^2 + y_n^2} = Ltg\alpha_0$ образуются яркие пятна- главные максимумы.

Мысленно выделим в падающем световом пучке два луча, падающие на две соседние щели, и два луча, исходящие от щелей и направленных к главному n-му максимуму. Направление на n-й максимум задаётся углом θ_n , который является углом в прямоугольном треугольнике на рис.4б.


 $\Delta l = d \sin \theta_n$ - разность хода для волн, идущих от соседних щелей Условие на главные максимумы: $d \sin \theta_n = n \lambda$

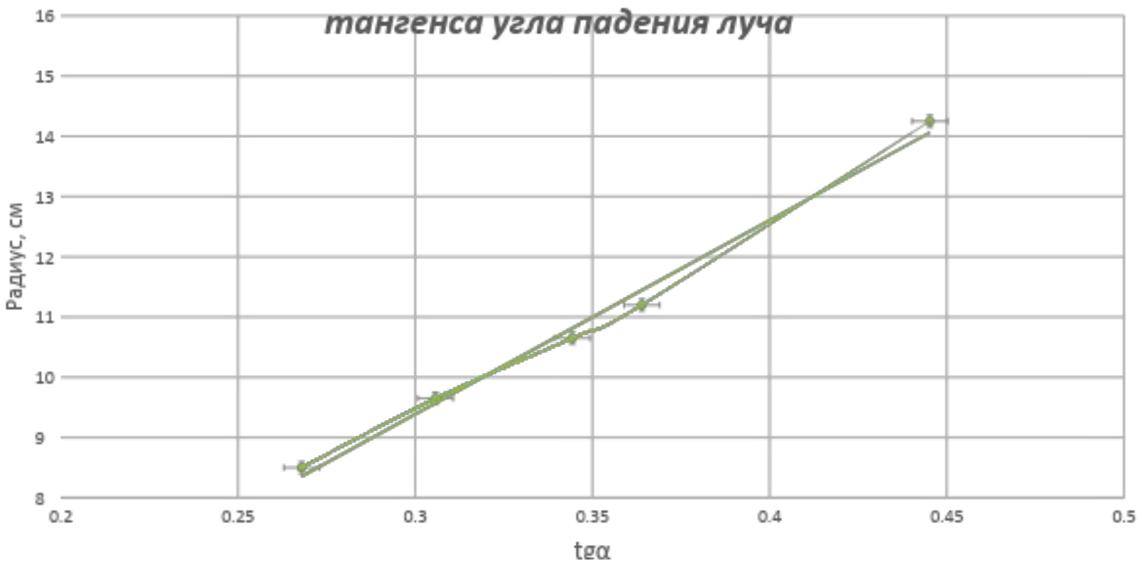
$$sin heta_n = rac{x_n}{\sqrt{L^2 + R^2}}$$
 Тогда $x_n = nrac{\lambda L}{d}\sqrt{1 + rac{R^2}{L^2}}$ и при x-> R n -> $n_{max} = rac{d}{\lambda}rac{R}{\sqrt{L^2 + R^2}}$

Экспериментальная установка


- В данной работе был использован лазер с длиной волны 532 нм мощностью 5000 мВт.
- Лазер был закреплен на книге, между страничками которой был помещен маркер для изменения угла, под которым будут падать лучи.
- В качестве дифракционной решетки были использованы отпалированная игла и волос.
- В качестве экрана использовались белые листы, закрепленные на стене.

Экспериментальная установка

Дифракция на волосе


Измерения

Были проведены измерения угла, под которым падает луч лазера на иглу. Полученные результаты сравнивались со значением угла, измеренные транспортиром.

Nº	L±0,1 см, см	d±0,1 см, см	r±0,1 см, см	tgα	α±0,24°, °	αизм±1°,°
1	31, 5	28, 5	14,25	0,452	24,3	24,0
2		22,5	11,20	0,356	19,6	20,0
3		21,3	10,65	0,338	18,7	19,0
4		19,3	9,65	0,306	17,0	17,0
5		17,0	8,50	0,270	15,1	15,0

$$\varepsilon_{\alpha} = 1\%$$
 $\varepsilon_{\alpha \text{ \tiny M3M}} = 6\%$

Зависимость радиуса дифракционного колеса от

Список используемой литературы

- В.В. Лосев, В.И. Плис. Дифракция света на щели и тонком цилиндре. Конус дифракции. ФМИ №2 2016
- В.В. Лосев, В.И. Плис. Дифракция на одномерных дополнительных решетах. Дифракционное колесо. ФМИ №6 2016

Благодарности

Огромная благодарность Валерию Ивановичу за тему вынова по и помощыбору реализаци

