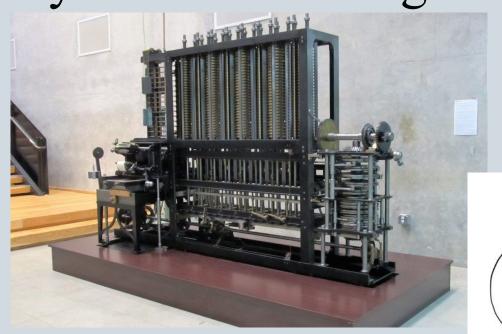
Augusta Ada King, Countess of Lovelace

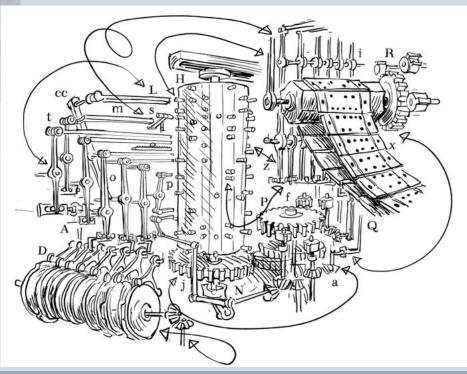
Institute of Information Technology and
Management in Technical Systems
Group IS-18
Nikitina irina

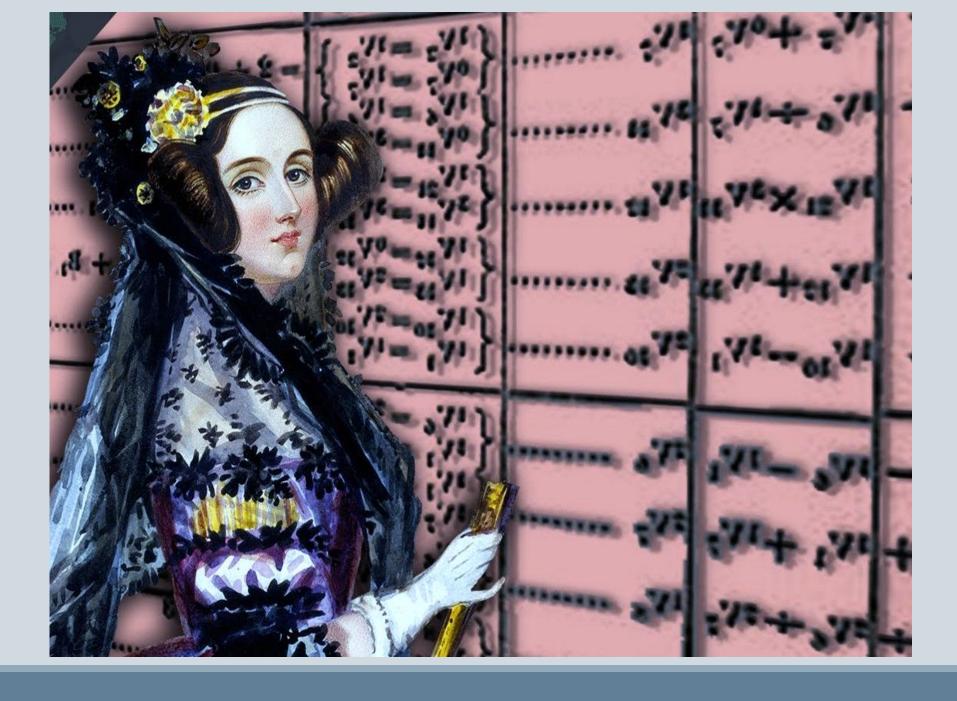
Ada Lovelace

Born: December 10, 1815

Died: November 27, 1852


She was a mathematician


She was born in London, United


Kingdom

Number of Operation.	Name of Operation.	Variables acted apon.	Variables receiving results.	Indication of change is the value on any Variable.	Sustained of Residu.	Dua			Working Variables									Result Variables				
						¥ 000 = 1	3,000 M	\$**** ·	60000	**O=== [5,0000	\$"O [\$0000 [\$ 0000	*********	60000000000000000000000000000000000000	******	V _B	B, list Jackers Og factors	F School of British	F Separation	Figure E
1 2 2 4 5 6 7	+++-	$V_4 - iV_1$ $V_2 + iV_4$ $V_4 + iV_4$ $V_{12} + iV_{3}$ $V_{13} - iV_{13}$:v _n	(10, -01, 10, -01, 10, 10, 10, 10, 10, 10, 10, 10, 10,			· · · · · · · · · · · · · · · · · · ·		2s 2s -1 0	2+1 0 -	24				 	$\begin{array}{c} 3n-1 \\ 2n+1 \\ 1 \\ 2n+1 \\ 1 \\ 2n-1 \\ 2n+1 \\ 0 \end{array}$		$-\frac{1}{8} \cdot \frac{2n-1}{2n+1} - \lambda_n$				
8 9 10 11 12 12	* + !	V _{is} × [†] V _{is} V _{is} + [†] V _{is} V _{is} - [†] V _i	·v ₁₁ ·v ₁₁	$\begin{cases} \frac{1}{2}V_{ij} = 2V_{ij} \\ 0V_{ij} = 2V_{ij} \\ 0V_{ij} = 2V_{ij} \\ 0V_{ij} = 2V_{ij} \\ 1V_{ij} = 2V_{ij} \end{cases}$			*				 2n 	2 2		10		$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$	$B_1, \frac{2\pi}{2} = B_1 A_1$	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + 2, \frac{2n}{2}\right\}$	B ₁			
12 14 15 16 17 18, 19 20 21 22 23	+ × + -	$v_{a} + v_{c}$ $v_{a} \times v_{c}$ $v_{a} \times v_{c}$ $v_{b} \times v_{c}$ $v_{b} + v_{c}$ $v_{b} + v_{c}$ $v_{b} \times v_{c}$	1V ₀	$\begin{cases} V_{ij} &= 2V_{ij} \\ V_{ij} &= V_{ij} \\ V_{ij} &$	$= B_0 \cdot \frac{2 v}{3} \cdot \frac{2 u - 1}{3} \cdot \frac{2 u - 3}{3} = B_0 A_0$ $= A_0 + B_1 A_0 + B_0 A_0 \dots$ $= v - B (= 1) \dots$	i 1 	1111111111				3 + -1 - 2 a -1 - 3 + -2 - - - - - - - - - - - - - - - - - -	3	2n-1	2n-1		$\begin{cases} \frac{2n}{2} & \frac{2n-1}{3} \\ \frac{2n}{3} & \frac{2n-1}{3} & \frac{2n-2}{3} \\ \frac{2n}{3} & \frac{2n-1}{3} & \frac{2n-2}{3} \\ 0 & \dots & \dots \end{cases}$	10, A ₀	$\left\{ \Lambda_0 + B_1 \Lambda_1 + E_2 \Lambda_2 \right\}$		B _a	A Charles and a contract of	STEW LINE IN
25	++	14. + 14.		$\begin{cases} {}^{*\gamma}_{10} = {}^{*\gamma}_{10} \\ {}^{*\gamma}_{10} = {}^{*\gamma}_{10} \end{cases}$	by a Variable cond.	1		-+	100			0	nafesa d	drives.	to twent	y-tree.		neum .				B _T

Difference engine, first created by Charles Babbage

Thank you for attention!