
3.4 Моделирование процессов с использованием «дерева событий»

Дерево событий (дерево исходов) — вероятностный граф (многоярусное «дерево решений»), построенное таким образом, что сумма вероятностей каждого деления равна единице, т.е. все события каждого уровня должны образовывать полную группу независимых событий.

В качестве центрального событий всегда рассматривается какоелибо происшествие, а ветви являются сценариями развития.

Системный анализ и моделирование процессов

ращение горения ПВО (C_{12}) ; 26. тепловое воздействие на соседние

объекты (C_{13}) ; 27. воспламенение ПВО $(C_{14}(; 28. pacceяние ПВО <math>(C_{15})$.

Системный анализ и моделирование процессов

Рекомендуемые значения частот аварий на стационарных объектах

Тип объекта	w	Размер утечки	
Химические заводы			
Резервуары (изотермическое хранение с двойной оболочкой)	1*10 ⁻⁶ (резервуар*год) ⁻¹	90% - выброс через отверстие 1" до тех пор, пока утечка не будут остановлена; 10% - мгновенный выброс	
Резервуары с одинарной оболочкой или сосуды под давлением	1*10 ⁻⁴ (резервуар*год) ⁻¹	10% - выброс через отверстие 1" до тех пор, пока утечка не будут остановлена; 90% - мгновенный выброс	
Трубопроводы	5*10 ⁻⁶ (м*год) ⁻¹	90% - выброс через отверстие 1" до тех пор, пока утечка не будут остановлена; 10% - полный разрыв	
Шланги, рукава	10 ⁻² (шланг*год) ⁻¹	полный диаметр шланга до полной остановки потока	
ОЭ общего назначения, объекты водоочистки			
Резервуары для хранения стабильных жидкостей	1*10 ⁻⁴ (резервуар*год) ⁻¹	90% - выброс через отверстие 1" до тех пор, пока утечка не будут остановлена; 10% - мгновенный выброс	
Трубопроводы (L > 30 м)	5*10 ⁻⁶ (м*год) ⁻¹	90% - выброс через отверстие 1" до тех пор, пока утечка не будут остановлена; 10% - полный разрыв	

4. Моделирование процессов истечения

Вероятность образования продольной трещины с характерным размером L_p

$$W(L_p) = 1 - \exp[-(\frac{L_p}{0.7})^{1.6}]$$

Фактор	Доля
Внешнее антропогенное воздействие	0,20
Коррозия	0,10
Качество производства труб	0,05
Качество строительно-монтажных работ	0,10
Конструктивно-технологические факторы	0,10
Природное воздействие	0,10
Эксплуатационные факторы	0,05
Дефекты материалов и сварных швов	0,30
	Внешнее антропогенное воздействие Коррозия Качество производства труб Качество строительно-монтажных работ Конструктивно-технологические факторы Природное воздействие Эксплуатационные факторы

4. Моделирование процессов истечения

4.1 Истечение газа при разрыве трубопровода на полное сечение

3-н сохранения массы
$$\frac{\partial \rho}{\partial \tau} + \frac{\partial}{\partial x} \left(\rho w \right) = 0$$
3-н сохранения
$$\frac{\partial}{\partial \tau} \left(\rho w \right) + \frac{\partial}{\partial x} \left(P + \rho w^2 \right) = -\lambda \frac{\rho w^2}{2 d_0}$$
3-н сохранения
$$\frac{\partial}{\partial \tau} \left[\rho \left(e + \frac{w^2}{2} \right) \right] + \frac{\partial}{\partial x} \left[\rho w \left(i + \frac{w^2}{2} \right) \right] = \frac{4\alpha}{d_0} \left(T_{cp} - T \right)$$

где: λ – коэффициент гидравлического сопротивления трения; ρ – плотность; т – время; w- осредненная по сечению трубы скорость потока; P – давление; e, i – удельные внутренняя энергия и энтальпия; d₀ – внутренний диаметр трубы; α- коэффициент теплопередачи газа с окружающей средой; T, Tcp – температуры газа и окружающей среды.

 $F(\rho, P, T) = 0$

Истечение газа при разрыве трубопровода на полное сечение (продолжение)

Уравнения состояния для природного газа (термодинамическое соотношение Бертло)

$$P = z\rho \widetilde{R}T; \qquad z = 1 + 0.071 \cdot \frac{P}{T} \cdot \frac{T_*}{P_*} \cdot \left[1 - 6 \cdot \left(\frac{T_*}{T} \right)^2 \right]$$

где P_* , T_* «псевдокритические» значения температуры и давления (для смеси углеводородов);

При «мгновенном» аварийном разрушении газопровода «на полное сечение» в сечении разрыва формируются критические условия истечения.

$$w(0) = w_{kp} = a;$$
 $G_{kp} = \mu \frac{\pi d_0^2}{4} \sqrt{k \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} \cdot \rho \cdot P$

где µ – коэффициент расхода; а – скорость звука, G_{кр} – критический массовый расход.

Истечение газа при разрыве трубопровода на полное сечение (продолжение)

Уравнение Белла

$$G(\tau) = \frac{\Gamma G_{_{\scriptscriptstyle H}}}{1 + \eta} \exp(-\frac{\tau}{\eta^2 \varepsilon}) + \eta \exp(-\frac{\tau}{\varepsilon})$$

где $G, G_{_H}$ – соответственно текущий и начальный расход газа, кг/с; \mathcal{T} - время с момента разрыва, сек; Γ - фактор инерционной задержки (\sim 0,5);

 η - коэффициент сохранения массы;

 $\dot{\mathcal{E}}$ - постоянная времени, сек.

$$G_{H} = \frac{P_{H} A_{p} \sqrt{k}}{\sqrt{R Z_{\kappa p} T_{H}}} \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}}$$

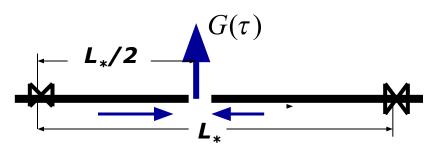
Здесь P_{A} – давление газа в трубопроводе до разрыва, Па;

 A_{p}^{-} площадь поперечного сечения разрыва, м²;

R — универсальная газовая постоянная, Дж/(кг.К);

 $T_{_{\! H}}$ – температура в газопроводе до разрыва, к;

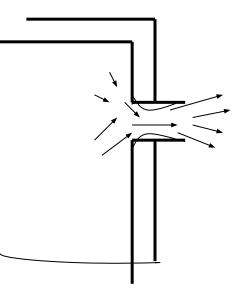
Z – коэффициент сжимаемости по условиям газа на срезе


Истечение газа при разрыве трубопровода на полное сечение (продолжение)

$$\eta = rac{M_{_{\mathcal{E}}}}{arepsilon arGamma G_{_{\scriptscriptstyle{H}}}}$$

$$\varepsilon = \frac{2}{3} \frac{L_*}{a_0} \sqrt{\frac{k f_{mp} L_*}{d_0}}$$

$$a_0 = \sqrt{kRZ_{_{\scriptscriptstyle H}}T_{_{_{\scriptscriptstyle H}}}}$$


$$M_{z} = \frac{1.3L_{*}A_{0}d_{0}}{RZ_{H}T_{H}}$$

Изменение расхода природного газа при разрыве на полное сечение газопровода

1 – расчет; 2 - эксперимент

4.2 Истечение газа при разгерметизации сосуда высокого давления

Допущения:

- 1. Критическое истечение «идеального газа» из сосуда с «толстой стенкой».
- 2.Интенсивность внешнего ТО >> интенсивности внутреннего ТО и $T_{w} \sim T_{oc}$;

3.
$$\frac{dT_g}{d\tau} >> \frac{dT_w}{d\tau}$$

Тепловой поток от стенки сосуда к газу

$$\frac{dq}{d\tau} = \alpha_g F(T_{cm} - T_g)$$

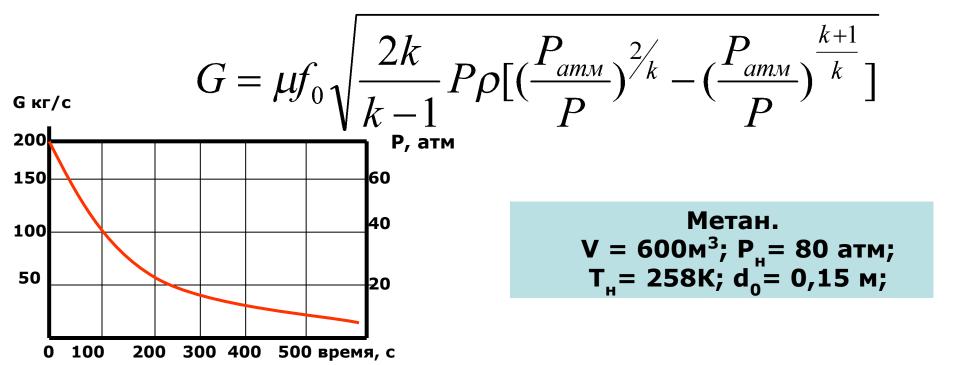
$$Nu = \frac{\alpha_g l}{\lambda_g} = b(Gr \cdot Pr)^{\frac{1}{3}},$$

$$\frac{dp}{d\tau} = \frac{k-1}{k} \left(\frac{dq}{d\tau} - iG \right)$$

Истечение газа при разгерметизации сосуда высокого давления (продолжение)

Изменение параметров состояния газа

$$\frac{dP}{d\rho} = \frac{k-1}{G}(\frac{dq}{d\tau} - iG)$$
 где $i = \frac{k}{k-1}\frac{RT_0}{RT_0}$ энтальпия газа; P – давление, G –массовый расход газа


$$G = \mu f_0 \frac{p}{\sqrt{T_g}} \sqrt{k(\frac{2}{k+1})^{\frac{k+1}{k-1}}} \frac{1}{R}$$

Истечение газа при разгерметизации сосуда высокого давления (продолжение)

При снижении давления в сосуде до величины

$$P(\tau)(\frac{2}{k+1})^{\frac{k}{k+1}} \le P_{amm}$$

в сечении истечения устанавливается давление $P_{_{\!a_{TM}}}$ и $G = f(P/P_{_{\!a_{TM}}})$

