

Введение в математический анализ

Вебинар 2 Теория множеств Математическая логика

План занятия:

Введение в теорию множеств
 Описание множеств
 Операции над множествами
 Примеры множеств

• Введение в математическую логику

Логические операции и таблицы истинности

Основные законы логики высказываний

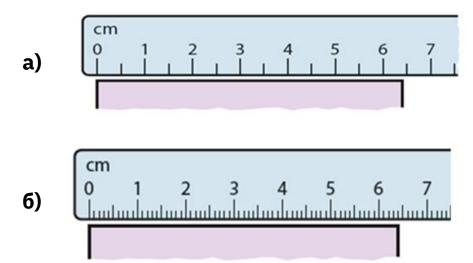
Примеры высказываний и задачи

Любая научная дисциплина требует теории для её изучения. Для математического анализа и для любой другой математической дисциплины такой теорией является теория множеств.

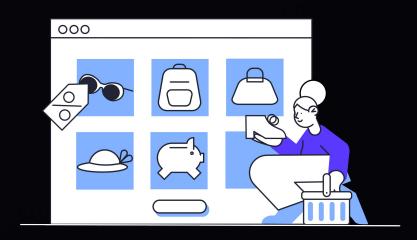
Свойства любой научной теории

- Теорию невозможно доказать или опровергнуть: это набор аксиом, инструмент
- Любая теория, состоящая из аксиом, неполна и требует проверки теорией большего порядка (Гёдель Курт Фридрих)

То есть рано или поздно любая теория приводит к противоречиям внутри себя, что требует развития новой или переосмысления старой теории.

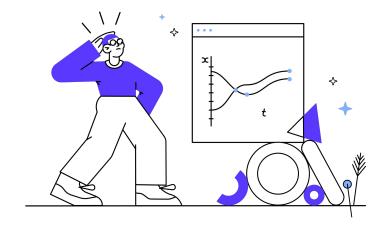


Теория множеств



Теория множеств

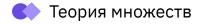
Топливом для развития теории множеств послужила необходимость исследования бесконечности, главным образом, исследование простых чисел на бесконечности.



• Понятие множества принадлежит к числу простейших математических понятий и не имеет точного определения.

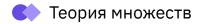
Любое множество задается своими элементами.

• **Примеры множеств:** книги в библиотеке; студенты, присутствующие на занятии; целые числа; комплексные числа; множества множеств,...



Описание множеств

- Множество обозначают заглавными латинскими буквами (A)
- Его элементы строчными латинскими буквами (a)
- То, что элемент принадлежит множеству, обозначают так: а∈А
- Если а не принадлежит A, то этот факт обозначают так: a & A



Описание множеств

- Множество обозначают заглавными латинскими буквами (A)
- Его элементы строчными латинскими буквами (a)
- То, что элемент принадлежит множеству, обозначают так: а∈ А
- Если а не принадлежит A, то этот факт обозначают так: а А

1. Множество натуральных чисел можно задать так:

$$\mathbb{N} = \{1, 2, 3, \dots, n, n+1, \dots\}$$

1. Множество целых чисел можно задать так:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots, n, -n, \dots\}$$

1. Множество рациональных чисел можно задать так:

$$\mathbb{Q=}\Big\{rac{p}{q}\;\left|\;p\in\mathbb{Z},q\in\mathbb{N}
ight\}$$

Можно ли описать множество четных и нечетных чисел?

Можно ли описать множество четных и нечетных чисел?

$${2n \mid n \in Z} = {..., -4, -2, 0, 2, 4, 6, ...}$$

 ${2n+1 \mid n \in Z} = {..., -3, -1, 1, 3, 5, ...}$

Можно ли описать множество простых чисел?

Можно ли описать множество простых чисел?

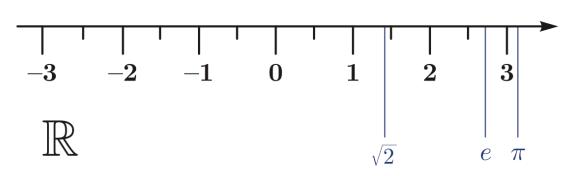


Примеры множеств

Множество вещественных чисел:

R – числовая ось.

(помимо рациональных чисел включает числа, которые нельзя представить в виде обыкновенной дроби, такие как π , e, $\sqrt{2}$, ...)



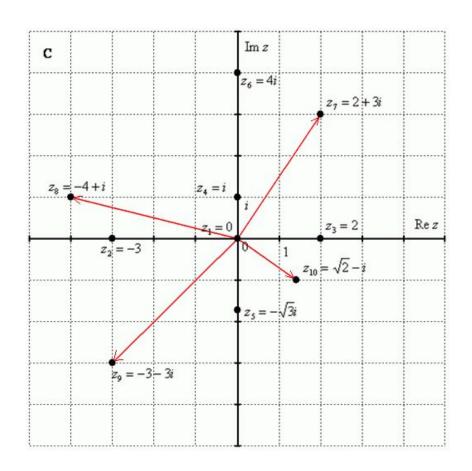
$$\mathbb{C} = \{x + iy | x \in \mathbb{R} \text{ и } y \in \mathbb{R}\},$$

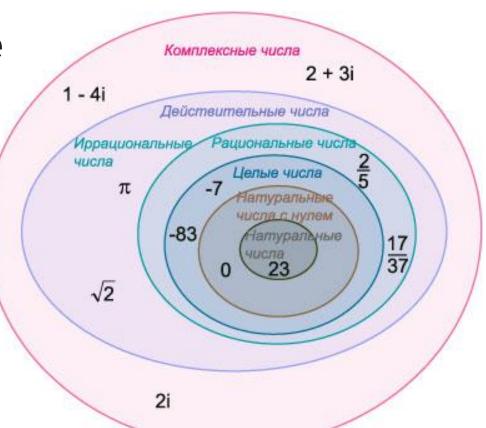
где \emph{i} — мнимая единица.

Re Im
$$\mathbb{C} = \{x + iy | x \in \mathbb{R} \text{ и } y \in \mathbb{R}\},$$

где
$$i$$
 — мнимая единица. $i = \sqrt{-1}$

Re - real Im - imaginary





Источник: math24.ru/

Два множества равны тогда и только тогда, когда состоят из одних и тех же элементов.

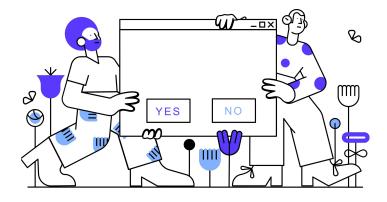
Если же все элементы множества A содержатся в множестве B, то говорят, что A является подмножеством множества B и обозначают A C B. Само же B называют надмножеством множества A.



В рамках рассматриваемой математической теории вводят два исключительных множества:

- Пустое множество (∅), не содержащее
 элементов
- Универсальное множество или «универсум»

 (U), содержащее все элементы данной теории.

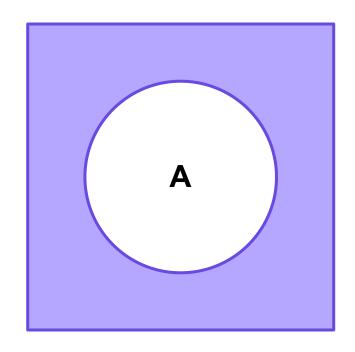


Операции над множествами

Дополнение. Для любого множества $A \subseteq U$ определим дополнение

$$A^c = \{b \in U \mid b \notin A\}$$

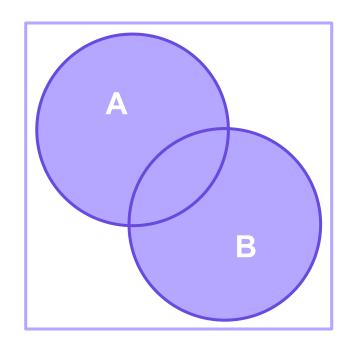
Например, в множестве вещественных чисел дополнением к множеству © является множество всех иррациональных чисел.



Объединение. Для любых двух множеств $A,B \subseteq U$ определим объединение

$$A \cup B = \{c \in U \mid (c \in A) \lor (c \in B)\}$$

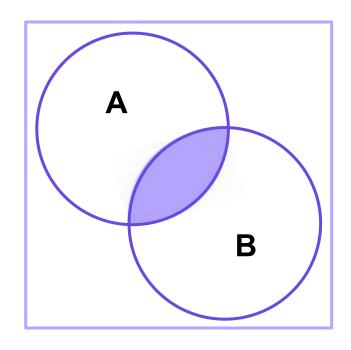
Значок V внутри фигурной скобки называется "дизъюнкция", по смыслу максимально приближенная к союзу «или» (логическая сумма). Например, объединением отрезков [1,3] и [2,7] является отрезок [1,7]



Пересечение. Для любых двух множеств $A,B \subseteq U$ определим пересечение

$$A \cap B = \{c \in U \mid (c \in A) \land (c \in B)\}$$

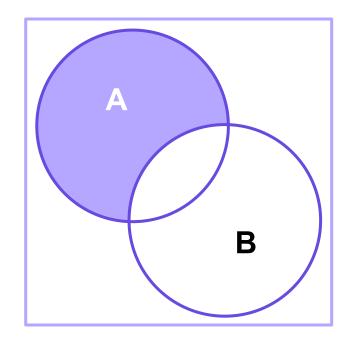
Значок ∧ внутри фигурной скобки называется "конъюнкция", по смыслу максимально приближенная к союзу «и» (логическое произведение). Например, пересечением отрезков [1,3] и [2,7] является отрезок [2,3].



Разность. Для любых двух множеств $A,B \subseteq U$ определим разность

$$A \setminus B = \{c \in U \mid (c \in A) \land (c \notin B)\}\$$

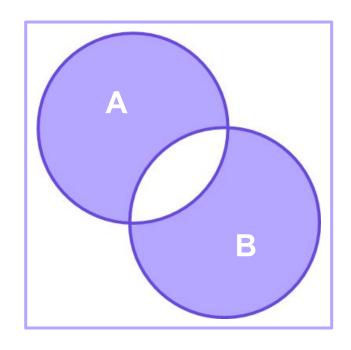
Например, разность отрезков [1,3] и [2,7] является отрезок [1,2), причем не включая 2.



Симметрическая разность. Для любых двух множеств $A,B \subseteq U$ определим симметрическую разность

$$A\Delta B = \{c \in U \mid (c \in A) \oplus (c \in B)\}.$$

Значок ● внутри фигурной скобки имеет много названий. Мы будем называть исключающее «или». Например, симметрическая разность отрезков [1,3] и [2,7] является объединение двух отрезков [1,2) U (3,7], причем не включая 2 и 3.

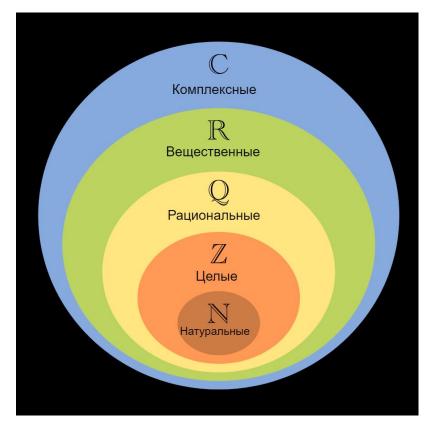


Реализация на Python

```
1 # Зададим множество А и В. Не обязательно числовые
 2 A = \{1,2,3,4,5, "десять", "двадцать"\}
3 B = \{4,5,6,7,8, "десять", "тридцать"\}
 4 print(A | B)
 5 print(B.union(A))
 6
 7 {1,2,3,4,5,6,7,8, 'десять', 'двадцать', 'тридцать'}
 8 {1,2,3,4,5,6,7,8, 'десять', 'двадцать', 'тридцать'}
10 print(A & B)
11 print(B.intersection(A))
12
13 {'десять'4,5,}
14 {'десять'4,5,}
```


Реализация на Python

```
16 print(A - B)
17 print(B.difference(A))
18 print(A.difference(B))
19
20 {1, 2, 3, 'двадцать'}
21 {8, 'тридцать', 6, 7}
22 {1, 2, 3, 'двадцать'}
23
24 print(A ^ B)
25 print(A.symmetric difference(B))
26
27 {1,2,3,4,5,6,7,8, 'двадцать', 'тридцать'}
28 {1,2,3,4,5,6,7,8, 'двадцать', 'тридцать'}
```

Множества. Рациональные числа

$$\frac{m}{n}$$
, где n — натуральное, m — целое

$$2 = \frac{2}{1}$$

$$3.5 = \frac{35}{10} = \frac{7}{2}$$

$$-2.8 = \frac{-28}{10} = \frac{-14}{5}$$

$$0.33333333... = 0.(3) = ?$$

$$a = 0.(3)$$

$$10a = 3.(3)$$

$$10a = 3 + 0.(3)$$

$$10a = 3 + a$$

$$9a = 3$$

$$a = \frac{3}{9} = \frac{1}{3} \implies 0.(3) = \frac{1}{3}$$

$$a = 0.(18)$$

$$100a = 18.(18)$$

$$100a = 18 + 0.(18)$$

$$100a = 18 + a$$

$$99a = 18$$

$$a = \frac{18}{99} = \frac{2}{11} \implies 0.(18) = \frac{2}{11}$$

$$a = 1.32(18)$$

$$100a = 132.(18)$$

$$100a = 132 + 0.(18)$$

$$100a = 132 + \frac{2}{11}$$

$$a = \frac{1454}{1100} = \frac{727}{550} \Rightarrow 1.32(18) = \frac{727}{550}$$

$$a = 0.(9)$$

$$a = 0.(9)$$

$$10a = 9.(9)$$

$$10a = 9 + 0.(9)$$

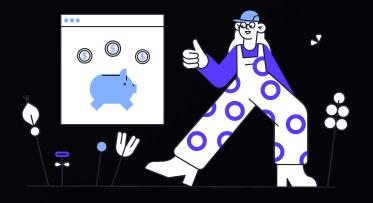
$$10a = 9 + a$$

$$9a = 9$$

$$a = 1 \implies 0.(9) = ?1$$

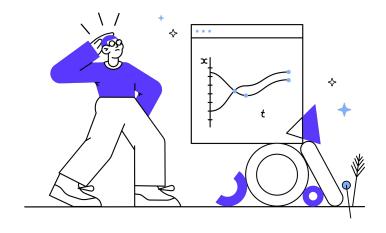


Математическая **логика**



Математическая логика

Логика высказываний рассматривает и решает вопрос об истинности или ложности высказываний на основе изучения способа построения высказываний из так называемых элементарных высказываний с помощью логических операций или связок. Основным понятием этого раздела логики является высказывание.



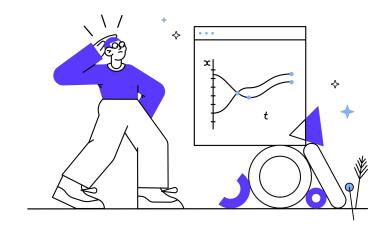
Высказыванием называется повествовательное предложение, про которое всегда определенно можно сказать, является оно истинным (1) или ложным (0).

Примеры высказываний: «2+2=4», «1+1=1», «Земля вращается вокруг Солнца», «3>5», «10 – нечетное число», «На улице идет дождь».

Побудительные предложения («Кругом!», «Идите к доске!»), вопросительные («Сколько времени?») и восклицательные («Ак Барс – чемпион!») высказываниями не являются.

Математическая логика

Пример 1. Предложение «Сдать зачет по математике можно, зная блестяще теорию или решив все примеры» можно представить А∪В, где А: «Сдать зачет можно, зная блестяще теорию», В: «Сдать зачет можно, решив все примеры»

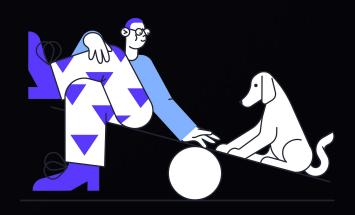


Способы работы с выражениями

- С помощью таблицы истинности.
- С помощью основных законов логики высказываний.

Диаграммы Венна: <u>libraryno.ru/</u>

Логические операции и таблицы истинности



1. Таблица истинности для конъюнкции (логическое умножение) АПВ

Α	В	F	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

Таблица истинности для дизъюнкции А∪В

Α	В	F	
1	1	1	(или
1	0	1	
0	1	1	
0	0	0	

3. Логическое отрицание или инверсия: Ā

Α	не А
1	0
0	1

не

К исходному логическому выражению добавляется частица «не» или слова «неверно, что».

4. Логическое следование или **импликация: А** - условие; **В** - следствие.

A→B

A	В	F	
1	1	1	есл
1	0	0	ТО
0	1	1	
0	0	1	

4. Логическое следование или **импликация: А** - условие; **В** - следствие.

A→B

A	В	F	
1	1	1	если ,
1	0	0	то
0	1	1	
0	0	1	A <=B

5. Логическая равнозначность или эквивалентность: А⇔В

Α	В	F
1	1	1
1	0	0
0	1	0
0	0	1

тогда и только тогда

5. Логическая равнозначность или эквивалентность: А⇔В

Α	В	F
1	1	1
1	0	0
0	1	0
0	0	1

тогда и только тогда

* Исключающее или: A ⊕ B

Α	В	F
1	1	0
1	0	1
0	1	1
0	0	0

* Исключающее или: A ⊕ B

Α	В	F
1	1	0
1	0	1
0	1	1
0	0	0

Математическая логика

Пример 2. Предложение «Если Сувар или Таиф проиграют, а Феникс выиграет тендер, то Альбатрос упрочит свое положение и мы понесем убытки» представляет собой импликацию $A \rightarrow B$, где посылка A составлена из трех элементарных высказываний: Р: «Сувар проиграет», Q: «Таиф проиграет», R: «Феникс выиграет», а заключение В есть конъюнкция высказывания D: «Альбатрос упрочит свое положение» и **С:** «Мы понесем убытки». С помощью введенных символов первоначальное предложение записывается в виде формулы $((P∪Q)\cap R)\to (D\cap C)$.

Пусть Сувар проиграл (Р= «И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»); Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C=«Л»).

Если истинное значение простых переменных P, Q, R, D, C соответственно равны "И", "Л", "Л", "И", "Л", то истинное значение сложного высказывания может быть определено механически, используя таблицы истинности логических операций, следующим образом

```
((P ∪ Q) ∩ R) → (D ∩ C)

(("N" ∪ "Л") ∩ "Л") → ("N" ∩ "Л")

("N" ∩ "Л") → "Л"

"Л" → "Л"

"N"
```

Пусть Сувар проиграл (Р= «И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»); Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C=«Л»).

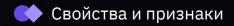
Таблица истинности

Пример 3. Доказать, что при любых значениях Р и Q справедлива формула:

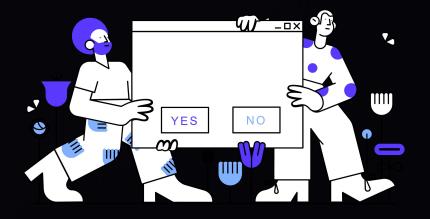
$$(P \rightarrow Q) \leftrightarrow (P \cup Q)$$

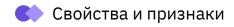
P	Q	$\mathbf{P} \rightarrow \mathbf{Q}$	P	₽∪Q	$(P\toQ)\leftrightarrow(\bar{P}\cupQ)$
"N"	"И"	"И"	"Л"	"И"	"N"
"N"	"Л"	"Л"	"Л"	"Л"	"N"
"Л"	"И"	"И"	"И"	"И"	"N"
"Л"	"Л"	"И"	"И"	"и"	"И"

Высказывание, истинное при любых значениях входящих в нее простых высказываний, называются **тавтологией.**



Свойства и признаки



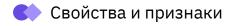


Свойства и признаки

Когда учительница ругала Дениса за плохой почерк, он сказал: "У всех великих людей был плохой почерк, значит, я великий человек." Прав ли он?

Предпосылка Дениса:

«У всех великих людей был плохой почерк»



Предпосылка Дениса:

«У всех великих людей был плохой почерк»

(этому пока верим; разбираемся, логичны ли дальнейшие рассуждения)

Сначала разберёмся, прав ли Денис в тех рамках, которые установил сам.

(Логичны ли его рассуждения?)

Если человек великий (A)

Предпосылка Дениса

У него плохой почерк (B)

Согласно утверждению Дениса, плохой почерк – это свойство великого человека.

Но не признак! Герой задачи не прав.

Из прямого утверждения не следует обратное!

Можно привести много верных математических утверждений, обратные к которым неверны. Например: если два числа чётны, то их сумма тоже чётна. Но совсем не обязательно, что если сумма двух чисел чётна, то оба они тоже чётны (3 + 5 = 8).

Больше подобных задач на логику здесь (сайт Малого Мехмата МГУ): mmmf.msu.ru

Основные законы логики высказываний

- Коммутативность конъюнкции: A ∩ B = B ∩ A
- 2. Коммутативность дизъюнкции: $A \cup B = B \cup A$
- 3. Ассоциативность конъюнкции: $A \cap (B \cap C) = (A \cap B) \cap C$
- 4. Ассоциативность дизъюнкции: $A \cup (B \cup C) = (A \cup B) \cup C$
- 5. Дистрибутивность конъюнкции относительно дизъюнкции:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

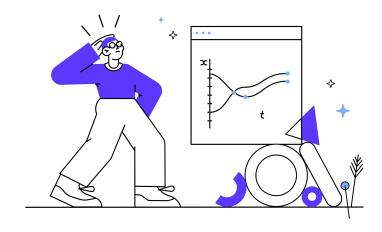
1. Дистрибутивность дизъюнкции относительно конъюнкции:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- 7. Закон де Моргана относительно конъюнкции: $(A \cap B) = \bar{A} \cup B$
- 8. Закон де Моргана относительно дизъюнкции: $(A \cup B) = \bar{A} \cap B$
- 9. Закон поглощения дизъюнкции: А ∪ (А ∩ В) = А
- 10. Закон поглощения конъюнкции: А ∩ (А ∪ В) = А
- 11. Закон идемпотентности для конъюнкции: А \cap A = A
- 12. Закон идемпотентности для дизъюнкции: А ∪ А = А
- 13. Закон противоречия: А ∩ Ā = "Л"
- **14**. Закон исключения третьего: $A \cup \bar{A} = "V"$
- 15. Закон двойного отрицания: (A) = A
- **16.** A ∩ "Л" = "Л", A ∩ "И" = A
- **17.** A∪"Л" = A, A∪"И" = "И"

Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \overline{A})$



6. Дистрибутивность дизъюнкции относительно конъюнкции:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

8. Закон де Моргана относительно дизъюнкции:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

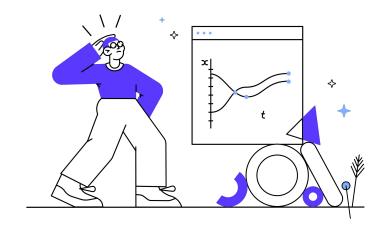
Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}))$

$$(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}) =$$

$$= (A \cap (A \cap B)) \cup ((A \cup C) \cap (A \cup \bar{A})) =$$

$$(8,6)$$



7. Закон де Моргана относительно конъюнкции:

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

14. Закон исключения третьего:

$$A \cup \bar{A} = "N"$$

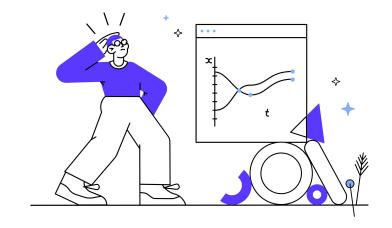
Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A})$

$$(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}) = (8,6)$$

$$= (\bar{A} \cap (A \cap B)) \cup ((A \cup C) \cap (A \cup \bar{A}) = (7,14)$$

$$= (\bar{A} \cap (\bar{A} \cup B)) \cup ((A \cup C) \cap "N") = (7,14)$$



10. Закон поглощения конъюнкции:

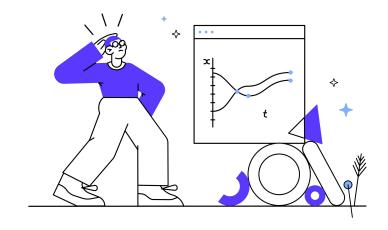
$$A \cap (A \cup B) = A$$

16.
$$A \cap "Л" = "Л", $A \cap "И" = A$$$

Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \overline{A}))$

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}) =$ (8,6) = $(A \cap (A \cap B)) \cup ((A \cup C) \cap (A \cup \bar{A})) =$ (7,14) = $(\bar{A} \cap (\bar{A} \cup B)) \cup ((A \cup C) \cap "N") =$ (10,16) = $\bar{A} \cup (A \cup C) =$



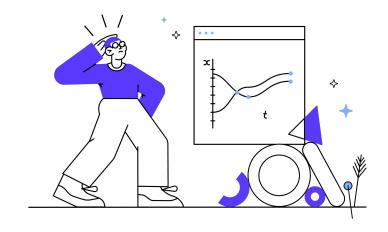
4. Ассоциативность дизъюнкции:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \overline{A}))$

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}) =$ (8,6) = $(A \cap (A \cap B)) \cup ((A \cup C) \cap (A \cup \bar{A})) =$ (7,14) = $(\bar{A} \cap (\bar{A} \cup B)) \cup ((A \cup C) \cap "N") =$ (10,16) = $(\bar{A} \cup (\bar{A} \cup C)) =$ (4)

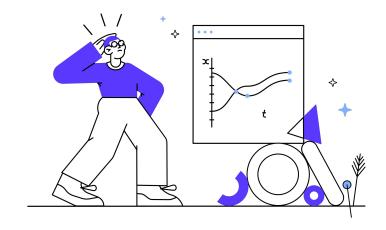


14. Закон исключения третьего:

Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \overline{A})$

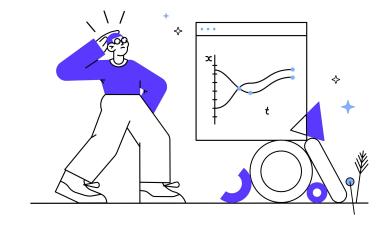
$(A \cup (A \cap B)) \cup (A \cup (C \cap \bar{A}) =$ $= (A \cap (A \cap B)) \cup ((A \cup C) \cap (A \cup \bar{A})) =$ $= (\bar{A} \cap (\bar{A} \cup B)) \cup ((A \cup C) \cap "N") =$ $= \bar{A} \cup (A \cup C) =$ $= (\bar{A} \cup A) \cup C =$	(8,6) (7,14) (10,16) (4) (14)
- (A O A) O C -	(14)



Пример 4. Упростить высказывание:

 $(A \cup (A \cap B)) \cup (A \cup (C \cap \overline{A})$

(A∪(A∩B))∪(A∪(C∩Ā) = = (A∩(A∩B))∪((A∪C)∩(A∪Ā)) = = (Ā∩(Ā∪B))∪((A∪C)∩"И") = = Ā∪(A∪C) = = (Ā∪A)∪C = = "И"∪C =	(8,6) (7,14) (10,16) (4) (14)
= "N" () C =	(17)



Кванторы

- Всеобщности (∀) (читается «для любого»)
- **Существования** (**∃**) (читается «существует»)

Отрицания высказываний

$$\overline{(\forall x \in X)A(x)} = (\exists x \in X)\overline{A(x)}$$

$$(\exists x \in X) A(x) = (\forall x \in X) A(x)$$

$$\overline{(\forall x \in X)(\exists y \in Y)A(x,y)} = (\exists x \in X)(\forall y \in Y)\overline{A(x,y)}$$

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

€ читается как «принадлежит»

$$sgn(x) = \begin{cases} 1 & if & x > 0, \\ 0 & if & x = 0, \\ -1 & if & x < 0 \end{cases}$$

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

$$\exists x \in (-\infty; 0] \operatorname{sgn}(x) \neq -1$$

- Квантор меняется на противоположный (∀ ↔ ∃).
- Принадлежность множеству сохраняется.
- Перед логическим сказуемым ставится «не».

Пара интересных примеров на логику

Пример 1

За книгу заплатили 100р. и еще половину своей стоимости. Сколько стоит книга?

Пример 2

За книгу заплатили 100р. и осталось заплатить еще столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

• Пример 1

За книгу заплатили 100р. и еще половину своей стоимости. Сколько стоит книга?

Пример 2

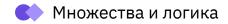
За книгу заплатили 100р. и осталось заплатить еще столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

Пример 1

За книгу заплатили 100р. и осталось заплатить еще столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

И еще пример!

Рыцари всегда говорят правду, а лжецы всегда лгут. Представьте, что все лжецы острова живут в одном городе, а рыцари – в другом. Как выяснить у аборигена, куда ведет интересующая нас дорога – в город рыцарей или в город лжецов?



И еще пример!

Рыцари всегда говорят правду, а лжецы всегда лгут. Представьте, что все лжецы острова живут в одном городе, а рыцари – в другом. Как выяснить у аборигена, куда ведет интересующая нас дорога – в город рыцарей или в город лжецов?

Ответ: Нужно задать вопрос "Какая дорога ведет в твой город?". Тогда и рыцарь, и лжец укажут на дорогу, ведущую к городу рыцарей. Тем самым мы и определимся с направлением пути.

Спасибо

Про домашнее задание

Как надо:

1. $\forall y \in [0; 1] : sgn(y) = 1$

Для любого у принадлежащего от 0 включительно, до 1 включительно верно, что сигнум от у равняется 1

Решение

$$sgn(y) = \begin{cases} 1 & if & y > 0, \\ 0 & if & y = 0, \\ -1 & if & y < 0, \end{cases}$$

Высказываение является ложным, по опеределению сигнум для 0.

Построим отрицание данного высказывания: $\exists y \in [0; 1] : sgn(y) \neq 1$

Существет у из промежутка от 0 включительно до 1 включительно, что сигнум от у не равен 1. Утверждение истино, так как $sgn(0) \neq 1$, значит текущее высказывание ложное.

Ответ: Текущее высказывание ложное

Про домашнее задание

Как не надо:

1. $\forall y \in [0; 1] : sgn(y) = 1$

Для любого у принадлежащего от 0 включительно, до 1 включительно верно, что сигнум от у равняется 1

Решение

$$sgn(y) = \begin{cases} 1 & if & y > 0, \\ 0 & if & y = 0, \\ -1 & if & y < 0, \end{cases}$$

Ответ: Текущее высказывание ложное

Построим отрицание данного высказывания: $\exists y \in [0; 1] : sgn(y) \neq 1$