
Hashed and Hierarchical Timing Wheels

A paper by
George Varghese and Tony Lauck

Motivation

■ Timers are important for
■ Failure recovery, rate based flow control, scheduling algorithms,

controlling packet lifetime in networks

■ Timer maintenance high if
■ Processor interrupted every clock tick
■ Fine granularity timers are used
■ # outstanding timers is high

■ Efficient timer algorithms are required to reduce the
overall interrupt overhead

Model & Performance Measure
■ Routines in the model

■ Client Invoked :
■ START_TIMER(Interval, Request_ID, Expiry_Action)
■ STOP_TIMER(Request_ID)

■ Timer tick invoked :
■ PER_TICK_BOOKKEEPING
■ EXPIRY_PROCESSING

■ Performance Measure
■ Space : Memory used by the data structures
■ Latency : Time required to begin and end any of the routines

mentioned above

Currently Used Timer Schemes

a
b
c
d
e

Can maintain absolute expiry
time or the timer interval

START_TIMER = O(1)
STOP_TIMER = O(1)
PER_TICK_BOOKKEEPING = O(n)

a

b

c

d

e

f

maintain absolute expiry time

START_TIMER = O(n)
STOP_TIMER = O(1)
PER_TICK_BOOKKEEPING = O(1)

Tree based timers

a

b c

d

a

b

c

d

maintain absolute expiry
time

START_TIMER = O(log(n))
STOP_TIMER = O(1)
PER_TICK_BOOKKEEPING = O(1)

Can degenerate to a
linear list in case of equal
Interval timers

START_TIMER = O(n)
STOP_TIMER = O(1)
PER_TICK_BOOKKEEPING = O(1)

Simple Timing Wheel
■ Keep a large timing wheel
■ A curser in the timing wheel

moves one location every
time unit (just like a seconds
hand in the clock)

■ If the timer interval is within
a rotation from the current
curser position then put the
timer in the corresponding
location

■ Requires exponential amount
of memorySTART_TIMER = O(1)

STOP_TIMER = O(1)
PER_TICK_BOOKKEEPING = O(1)

1

2

3
45

6

7
0

Hashed Timing Wheel

1

2

3
45

6

7
0

2 4

1 2

2112

of rounds remaining ■ Say wheel has 8 ticks
■ Timer value = 17
■ Make 2 rounds of wheel

+ 1 more tick
■ Schedule the timer in

the bucket “1”
■ Keep the # rounds with

the timer
■ At the expiry

processing if the #
rounds > 0 then
reinsert the timer

Hashed Timing Wheel
■ Sorted Lists in each bucket

■ The list in each bucket can be insertion sorted
■ Hence START_TIMER takes O(n) time in the worst case
■ If n < WheelSize then average O(1)

■ Unsorted list in each bucket
■ List can be kept unsorted to avoid worst case O(n) latency for

START_TIMER
■ However worst case PER_TICK_BOOKKEEPING = O(n)
■ Again, if n < WheelSize then average O(1)

Hierarchical Timing Wheel

1

2

3
45

6

7
0

3 5

7 5

211

Hours wheel

1

2

3
45

6

7
0

1

2

3
45

6

7
0

Minutes wheel

Seconds wheel

1 3 3 5

3 7

15

Hierarchical Timing Wheels
■ START_TIMER = O(m) where m is the number of wheels

■ The bucket value on each wheel needs to be calculated
■ STOP_TIMER = O(1)
■ PER_TICK_BOOKKEEPING = O(1) on avg.

Comparison

START_TIME
R STOP_TIMER PER_TICK

O(1)Straight Fwd O(1) O(n)

Sequential
List O(n) O(1) O(1)

Tree Based O(log(n)) O(1) O(1)

Simple
Wheel O(1) O(1) O(1) High memory requirement
Hashed
Wheel

(sorted)Hashed
Wheel

(unsorted)
Hierarchical

 Wheels

O(n) worst
case

O(1) avg

O(1)

O(m)

O(1)

O(1)

O(1)

O(1)

O(n) worst
case

O(1) avg

O(1)

