
* 1

Chapter 12 GUI Basics

* 2

Motivations
The design of the API for Java GUI programming

is an excellent example of how the
object-oriented principle is applied. In the
chapters that follow, you will learn the
framework of Java GUI API and use the GUI
components to develop user-friendly interfaces
for applications and applets.

* 3

Objectives
● To distinguish between Swing and AWT (§12.2).
● To describe the Java GUI API hierarchy (§12.3).
● To create user interfaces using frames, panels, and simple GUI

components (§12.4).
● To understand the role of layout managers (§12.5).
● To use the FlowLayout, GridLayout, and BorderLayout managers to

layout components in a container (§12.5).
● To use JPanel as subcontainers (§12.7).
● To specify colors and fonts using the Color and Font classes

(§§12.7-12.8).
● To apply common features such as borders, tool tips, fonts, and

colors on Swing components (§12.9).
● To use borders to visually group user-interface components (§12.9).
● To create image icons using the ImageIcon class (§12.10).

* 4

Creating GUI Objects
// Create a button with text OK
JButton jbtOK = new JButton("OK");

// Create a label with text "Enter your name: "
JLabel jlblName = new JLabel("Enter your name: ");

// Create a text field with text "Type Name Here"
JTextField jtfName = new JTextField("Type Name Here");

// Create a check box with text bold
JCheckBox jchkBold = new JCheckBox("Bold");

// Create a radio button with text red
JRadioButton jrbRed = new JRadioButton("Red");

// Create a combo box with choices red, green, and blue
JComboBox jcboColor = new JComboBox(new String[]{"Red",
 "Green", "Blue"});

Button

Label Text
field

Check
Box

Radio
Button

Combo
Box

* 5

Swing vs. AWT
So why do the GUI component classes have a prefix J? Instead of JButton, why

not name it simply Button? In fact, there is a class already named Button in the
java.awt package.

When Java was introduced, the GUI classes were bundled in a library known as
the Abstract Windows Toolkit (AWT). For every platform on which Java runs,
the AWT components are automatically mapped to the platform-specific
components through their respective agents, known as peers. AWT is fine for
developing simple graphical user interfaces, but not for developing
comprehensive GUI projects. Besides, AWT is prone to platform-specific bugs
because its peer-based approach relies heavily on the underlying platform.
With the release of Java 2, the AWT user-interface components were replaced
by a more robust, versatile, and flexible library known as Swing components.
Swing components are painted directly on canvases using Java code, except for
components that are subclasses of java.awt.Window or java.awt.Panel, which
must be drawn using native GUI on a specific platform. Swing components are
less dependent on the target platform and use less of the native GUI resource.
For this reason, Swing components that don’t rely on native GUI are referred to
as lightweight components, and AWT components are referred to as
heavyweight components.

* 6

GUI Class Hierarchy (Swing)

* 7

Container Classes

Container classes can
contain other GUI
components.

* 8

The helper classes are not subclasses
of Component. They are used to
describe the properties of GUI
components such as graphics context,
colors, fonts, and dimension.

GUI Helper Classes

* 9

Swing GUI Components

* 10

Components Covered in the Brief Version

* 11

Components Covered in the Comprehensive Version

* 12

AWT (Optional)

* 13

Frames
● Frame is a window that is not contained inside

another window. Frame is the basis to contain
other user interface components in Java GUI
applications.

● The JFrame class can be used to create
windows.

● For Swing GUI programs, use JFrame class to
create widows.

* 14

Creating Frames

Run

import javax.swing.*;
public class MyFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Test Frame");
 frame.setSize(400, 300);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 }

 }

MyFrame

* 15

Adding Components into a Frame
// Add a button into the frame
frame.getContentPane().add(
 new JButton("OK"));

RunMyFrameWithComponents

Title bar

Content pane

* 16

Content Pane Delegation in JDK 1.5
// Add a button into the frame
frame.getContentPane().add(
 new JButton("OK"));

Title bar

Content pane
// Add a button into the frame
frame.add(
 new JButton("OK"));

* 17

JFrame Class

* 18

Layout Managers
● Java’s layout managers provide a level of abstraction to

automatically map your user interface on all window
systems.

● The UI components are placed in containers. Each
container has a layout manager to arrange the UI
components within the container.

● Layout managers are set in containers using the
setLayout(LayoutManager) method in a container.

* 19

Kinds of Layout Managers
● FlowLayout (Chapter 13)

● GridLayout (Chapter 13)

● BorderLayout (Chapter 13)

● Several other layout managers will be introduced
in Chapter 33, “Containers, Layout Managers, and
Borders”

* 20

FlowLayout Example

Write a program that
adds three labels
and text fields into
the content pane of
a frame with a
FlowLayout
manager.

ShowFlowLayout Run

* 21

The FlowLayout Class

* 22

GridLayout Example

Rewrite the program in
the preceding
example using a
GridLayout manager
instead of a
FlowLayout manager
to display the labels
and text fields.

ShowGridLayout Run

* 23

The GridLayout Class

* 24

The BorderLayout Manager

The BorderLayout
manager divides the
container into five areas:
East, South, West, North,
and Center. Components
are added to a
BorderLayout by using
the add method.

add(Component,
constraint), where
constraint is
BorderLayout.EAST,
BorderLayout.SOUTH,
BorderLayout.WEST,
BorderLayout.NORTH, or
BorderLayout.CENTER.

* 25

BorderLayout Example

ShowBorderLayout Run

* 26

The BorderLayout Class

* 27

The Color Class
You can set colors for GUI components by using the

java.awt.Color class. Colors are made of red, green,
and blue components, each of which is represented by
a byte value that describes its intensity, ranging from 0
(darkest shade) to 255 (lightest shade). This is known
as the RGB model.
Color c = new Color(r, g, b);

r, g, and b specify a color by its red, green, and blue
components.

Example:
Color c = new Color(228, 100, 255);

* 28

Standard Colors
Thirteen standard colors (black, blue, cyan, darkGray,

gray, green, lightGray, magenta, orange, pink, red,
white, yellow) are defined as constants in
java.awt.Color.

The standard color names are constants, but they are
named as variables with lowercase for the first word
and uppercase for the first letters of subsequent words.
Thus the color names violate the Java naming
convention. Since JDK 1.4, you can also use the new
constants: BLACK, BLUE, CYAN, DARK_GRAY,
GRAY, GREEN, LIGHT_GRAY, MAGENTA,
ORANGE, PINK, RED, WHITE, and YELLOW.

* 29

Setting Colors
You can use the following methods to set the

component’s background and foreground colors:
setBackground(Color c)

setForeground(Color c)

Example:
jbt.setBackground(Color.yellow);

jbt.setForeground(Color.red);

* 30

The Font Class

Font myFont = new Font(name, style, size);
Example:

Font myFont = new Font("SansSerif ", Font.BOLD, 16);
Font myFont = new Font("Serif", Font.BOLD+Font.ITALIC, 12);

JButton jbtOK = new JButton("OK“);
jbtOK.setFont(myFont);

Font Names
Standard font names
that are supported in
all platforms are:
SansSerif, Serif,
Monospaced, Dialog,
or DialogInput.

Font Style
Font.PLAIN (0),
Font.BOLD (1),
Font.ITALIC (2), and
Font.BOLD +
Font.ITALIC (3)

* 31

Finding All Available Font
Names

GraphicsEnvironment e =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontnames =

e.getAvailableFontFamilyNames();
for (int i = 0; i < fontnames.length; i++)
 System.out.println(fontnames[i]);

* 32

Using Panels as Sub-Containers
● Panels act as sub-containers for grouping user interface

components.
● It is recommended that you place the user interface

components in panels and place the panels in a frame.
You can also place panels in a panel.

● To add a component to JFrame, you actually add it to
the content pane of JFrame. To add a component to a
panel, you add it directly to the panel using the add
method.

* 33

Creating a JPanel
You can use new JPanel() to create a panel with a default

FlowLayout manager or new JPanel(LayoutManager)
to create a panel with the specified layout manager. Use
the add(Component) method to add a component to the
panel. For example,

JPanel p = new JPanel();
p.add(new JButton("OK"));

* 34

Testing Panels Example
This example uses panels to organize components.

The program creates a user interface for a
Microwave oven.

TestPanels Run

* 35

Common Features of Swing Components

* 36

Borders
You can set a border on any object of the

JComponent class. Swing has several types of
borders. To create a titled border, use
new TitledBorder(String title).

To create a line border, use
new LineBorder(Color color, int width),

where width specifies the thickness of the line.
For example, the following code displays a
titled border on a panel:
JPanel panel = new JPanel();
panel.setBorder(new TitleBorder(“My Panel”));

* 37

Test Swing Common Features
Component Properties

● font
● background
● foreground
● preferredSize
● minimumSize
● maximumSize

JComponent Properties

● toolTipText
● border

TestSwingCommonFeatures Run

* 38

Image Icons
Java uses the javax.swing.ImageIcon class to represent

an icon. An icon is a fixed-size picture; typically it is
small and used to decorate components. Images are
normally stored in image files. You can use new
ImageIcon(filename) to construct an image icon. For
example, the following statement creates an icon from
an image file us.gif in the image directory under the
current class path:

 ImageIcon icon = new ImageIcon("image/us.gif");

TestImageIcon Run

* 39

Splash Screen
A splash screen is an image that is displayed while the

application is starting up. If your program takes a long
time to load, you may display a splash screen to alert
the user. For example, the following command:

java –splash:image/us.gf TestImageIcon

displays an image while the program TestImageIcon is
being loaded.

