Chapter 12 GUI Basics

Motivations

The design of the API for Java GUI programming
1s an excellent example of how the
object-oriented principle 1s applied. In the
chapters that follow, you will learn the
framework of Java GUI API and use the GUI
components to develop user-friendly interfaces
for applications and applets.

Objectives

To distinguish between Swing and AWT (§12.2).
To describe the Java GUI API hierarchy (§12.3).

To create user interfaces using frames, panels, and simple GUI
components (§12.4).

To understand the role of layout managers (§12.5).

To use the FlowlLayout, GridL.ayout, and Borderl.ayout managers to
layout components in a container (§12.5).

To use JPanel as subcontainers (§12.7).

To specify colors and fonts using the Color and Font classes
(§§12.7-12.8).

To apply common features such as borders, tool tips, fonts, and
colors on Swing components (§12.9).

To use borders to visually group user-interface components (§12.9).
To create 1mage 1cons using the Imagelcon class (§12.10).

Creating GUI Objects

// Create a button with text OK
JButton jbtOK = new JButton ("OK") ;

// Create a label with text "Enter your name:

JLabel jlblName = new JLabel ("Enter your name: "); i
Label Text Check Radio
field Box Button
£ pisplay GUI Components i =10 x|
Button OK | Enter your hame: |Type Name Here| [_] Bold (' Red \Red i ‘

Red
Green
Blue

// Create a text field with text "Type Name Here"
JTextField jtfName = new JTextField("Type Name Here");

Combo
| 270);¢

// Create a check box with text bold
JCheckBox jchkBold = new JCheckBox ("Bold") ;

// Create a radio button with text red
JRadioButton jrbRed = new JRadioButton ("Red");

// Create a combo box with choices red, green, and blue
JComboBox jcboColor = new JComboBox (new String[] {"Red",
"Green", "Blue"});

Swing vs. AWT

So why do the GUI component classes have a prefix J? Instead of JButton, why
not name 1t simply Button? In fact, there 1s a class already named Button in the

java.awt package.

When Java was introduced, the GUI classes were bundled in a library known as
the Abstract Windows Toolkit (AWT). For every platform on which Java runs,
the AWT components are automatically mapped to the platform-specific
components through their respective agents, known as peers. AWT is fine for
developing simple graphical user interfaces, but not for developing
comprehensive GUI projects. Besides, AWT is prone to platform-specific bugs
because its peer-based approach relies heavily on the underlying platform.
With the release of Java 2, the AWT user-interface components were replaced
by a more robust, Versatlle and flexible library known as
Swing components are painted directly on canvases us1ng Java code, except for
components that are subclasses of java.awt. Window or java.awt.Panel, which
must be drawn using native GUI on a specific platform. Swing components are
less dependent on the target platform and use less of the native GUI resource.
For this reason, Swing components that don’t rely on native GUI are referred to
as , and AWT components are referred to as

5

GUI Class Hierarchy (Swing)

Classes in the java.awt
LayoutManager package .
Heavyweight

FontMetrics

<

JComponent Swing Components
in the javax.swing package
Lightweight

* 6

Object

Container Classes

Dimension Classes in the java.awt

LayoutManager package

Heavyweight
Font

FontMetrics

Graphics

Panel Applet JApplet

Window Frame JFrame

.

quapag

Dialog JDialog

JComponent JPanel Swing Components

in the javax.swing package

Lightweight

~

GUI Helper Classes

package

Dimension Classes in the java.awt
Font

Heavyweight

Applet JApplet

Frame JEFrame

o

Component

Dialog JDialog

Swing Components

JComponent

in the javax.swing package

Lightweight

o0

Swing GUI Components

JCheckBoxMenultem

JMenultem JMenu
bstractButton JRadioButtonMenultem

JToggleButton ICheckBox

. JRadioButton
JEditorPane
JTextComponent JTextField JPasswordField

JTextArea

sl
JTabbedPanc [l JSplitPanc [l TLayeredPane JScrollPane

JToolBar JPopupMenu |l JFileChooser [l JColorChooser il JToolTip
JTableHeader [l TTnternalFrame

Components Covered 1n the Brief Version

: JRadioButton
JEditorPane

JTextComponent JTextField JPasswordField

JComboBox JOptionPane [l JScrollBar [JSlider
JTabbedPanc [l JSplitPanc il JL.ayeredPane JSeparator JScrollPane

JToolBar JPopupMenu [l JFileChooser [l JColorChooser [l JTool Tip
JTableHeader [l TTnternalFrame [l TProgressBar

* 10

Components Covered in the Comprehensive Version

4bstractButton

JCheckBox
JRadioButton
JTextComponent JTextField JPasswordField

Sl

11

AWT (Optional)

AWTEvent Applet
Window
FileDialog

Font Button

FontMetrics Label

Object Color

Graphics

TextField

TextComponent

) TextArea
List

LayoutManager

Component Choice

CheckBox

CheckBoxGroup

Canvas

MenuComponent

Scrollbar

Frames

e Frame 1s a window that 1s not contained inside
another window. Frame 1s the basis to contain
other user interface components 1in Java GUI
applications.

e The JFrame class can be used to create
windows.

e For Swing GUI programs, use JFrame class to
create widows.

13

Creating Frames

import javax.swing.*;
public class MyFrame {
public static void main (Stringl[]

JFrame frame = new JFrame ("Test Frame") ;

frame.setSize (400, 300);

frame.setVisible (true);

frame.setDefaultCloseOperation (
JFrame .EXIT ON CLOSE);

args)

Run

{

Adding Components into a Frame

// Add a button into the frame
frame.getContentPane () .add (
new JButton ("OK")) ;

Title bar

Content pane

MyFrameWithComponents -

15

Content Pane Delegation in JDK 1.5

Title bar

Content pane

// Add a button into the frame
frame.getContentPane () .add (
new JButton ("OK")) ;

// Add a button into the frame
frame.add (
new JButton ("OK")) ;

16

JFrame Class

javax.swing.JFrame

+JFrame()

+JFrame(title: String)

+setSize(width: int, height: int): void
+setLocation(x: int, y: int): void
+setVisible(visible: boolean): void
+setDefaultCloseOperation(mode: int): void

+setLocationRelativeTo(c: Component):
void

+pack(): void

Creates a default frame with no title.

Creates a frame with the specified title.

Specifies the size of the frame.

Specifies the upper-left corner location of the frame.
Sets true to display the frame.

Specifies the operation when the frame 1s closed.

Sets the location of the frame relative to the specified component.
If the component is null, the frame 1s centered on the screen.

Automatically sets the frame size to hold the components in the
frame.

17

Layout Managers

e Java’s layout managers provide a level of abstraction to
automatically map your user interface on all window
systems.

e The Ul components are placed in containers. Each
container has a layout manager to arrange the Ul

components within the container.

e Layout managers are set in containers using the
setLayout(LayoutManager) method 1n a container.

18

Kinds of Layout Managers

FlowLayout (Chapter 13)
GridLayout (Chapter 13)
BorderLayout (Chapter 13)

Several other layout managers will be introduced
in Chapter 33, “Containers, Layout Managers, and
Borders”

19

FlowLayout Example

Write a program that T e
adds three labels Firs Name | Frst Name
and text fields into Lest oo Last Name
the content pane of
a frame with a
FlowLayout
manager.

ShowFlowl.ayout

*

20

The FlowLayout Class

java.awt.FlowLayout

-alignment: mt
-hgap: int

-vgap: int

+FlowLayout()

+FlowLayout(alignment: int)

+FlowLayout(alignment: int, hgap:

nt, vgap: int)

The get and set methods for these data fields are provided in
the class. but omitted in the UML diagram for brevity.

The alignment of this layout manager (default: CENTER).

The horizontal gap of this layout manager (default: 5 pixels).

The vertical gap of this layout manager (default: 5 pixels).

Creates a default FlowLayout manager.
Creates a FlowLayout manager with a specified alignment.

Creates a FlowLayout manager with a specified alignment,
horizontal gap, and vertical gap.

21

GridLayout Example

Rewrite the program in £ ShowGridLayout W [=] o4
the preceding First Name |
example using a MI
GridLayout manager s

instead of a
FlowLayout manager
to display the labels
and text fields.

* 22

The GridLayout Class

The get and set methods for these data fields are provided in
java.awt.GridLayout the class, but omitted in the UML diagram for brevity.

-rows: int The number of rows in this layout manager (default: 1).

-columns: int The number of columns in this layout manager (default: 1).
-hgap: int The horizontal gap of this layout manager (default: 0).

-vgap: int The vertical gap of this layout manager (default: 0).

+GridLayout() Creates a default GridLayout manager.
+GridLayout(rows: int, columns: int) | Creates a GridLayout with a specified number of rows and columns.

+GridLayout(rows: int, columns: int, | Creates a GridLayout manager with a specified number of rows and
hgap: int, vgap: int) columns, horizontal gap, and vertical gap.

23

The BorderLayout Manager

The BorderLayout add (Component,
manager divides the constraint), where
container into five areas: constraintis

East, South, West, North, = BorderLayout.EAST,
and Center. Components BorderLayout.SOUTH,

are added to a BorderLayout .WEST,
BorderLayout by using BorderLayout .NORTH, or
the add method. BorderLayout.CENTER.

24

BorderLayout Example

Center

* 25

The BorderLayout Class

java.awt.BorderLayout

-hgap: mt
-vgap: int

+BorderLayout()

+BorderLayout(hgap: int, vgap: int)

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

The horizontal gap of this layout manager (default: 0).

The vertical gap of this layout manager (default: 0).

Creates a default BorderLayout manager.

Creates a BorderLayout manager with a specified number of
horizontal gap, and vertical gap.

26

The Color Class

You can set colors for GUI components by using the
java.awt.Color class. Colors are made of red, green,
and blue components, each of which 1s represented by
a byte value that describes its intensity, ranging from 0
(darkest shade) to 255 (lightest shade). This 1s known
as the RGB model.

Color ¢ = new Color(r, g, b);

r, g, and b specify a color by its red, green, and blue
components.

Example:
Color ¢ = new Color (228, 100, 255);

27

Standard Colors

Thirteen standard colors

(black, blue, cyan, darkGray,

gray, green, lightGray, magenta, orange, pink, red,

white, yellow) are defined as constants in

java.awt.Color.

The standard color names are constants, but they are
named as variables with lowercase for the first word
and uppercase for the first letters of subsequent words.
Thus the color names violate the Java naming
convention. Since JDK 1.4, you can also use the new

constants: BLACK, B

GRAY, GREEN, LIG]

LUE, CYAN, DARK GRAY,
AT _GRAY, MAGENTA,

ORANGE, PINK, RE

D, WHITE, and YELLOW.

28

Setting Colors

You can use the following methods to set the
component’s background and foreground colors:

setBackground (Color c)

setForeground (Color c)

Example:

Jjbt.setBackground (Color.yellow) ;
Jbt.setForeground (Color.red) ;

29

The Font Class

Font Names Font Style
Standard font names Font.PLAIN (0),
that are supported in Font. BOLD (1),
all platforms are: FontITALIC (2), and
SansSerif, Serif, Font. BOLD +
Monospaced, Dialog, Font. ITALIC (3)

or Dialoglnput.

Font myFont = new Font (name, style, size);
Example:

Font myFont
Font myFont

new Font ("SansSerif ", Font.BOLD, 16);
new Font ("Serif", Font.BOLD+Font.ITALIC, 12);

JButton JjbtOK = new JButton ("OKY);
JbtOK.setFont (myFont) ;

30

Finding All Available Font
Names

GraphicsEnvironment e =
GraphicsEnvironment.getLocalGraphicsEnvironment () ;

String[] fontnames =
e.getAvailableFontFamilyNames () ;

for (int 1 = 0; 1 < fontnames.length; 1i++)

System.out.println (fontnames[1]);

31

Using Panels as Sub-Containers

e Panels act as sub-containers for grouping user interface
components.

e It is recommended that you place the user interface
components 1n panels and place the panels 1n a frame.
You can also place panels 1n a panel.

e To add a component to JFrame, you actually add it to
the content pane of JFrame. To add a component to a
panel, you add it directly to the panel using the add
method.

32

Creating a JPanel

You can use new JPanel() to create a panel with a default
FlowlL ayout manager or new JPanel(I.ayoutManager)

to create a panel with the specified layout manager. Use
the add(Component) method to add a component to the
panel. For example,

JPanel p = new JPanel();
p.add(new JButton("OK™")):

33

Testing Panels Example

This example uses panels to organize components.
The program creates a user interface for a
Microwave oven.

A textfield
‘
A button 12 ﬁ
buttons |3

rruc TR

34

Common Features of Swing Components

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

Jjava.awt.Component

-font: java.awt.Font The font of this component.

-background: java.awt.Color The background color of this component.
-foreground: java.awt.Color The foreground color of this component.
-preferredSize: Dimension The preferred size of this component.
-visible: boolean Indicates whether this component is visible.

+getWidth(): int Returns the width of this component.
+getHeight(): int Returns the height of this component.

+getX(): int getX() and getY() return the coordinate of the component’s
+getY(): int upper-left corner within its parent component.

-

java.awt.Container

+add(comp: Component): Component Adds a component to the container.

+add(comp: Component, index: int): Component§ Adds a component to the container with the specified index.
+remove(comp: Component): void Removes the component from the container.

+getLayout(): LayoutManager Returns the layout manager for this container.

+setLayout(l: LayoutManager): void Sets the layout manager for this container.
+paintComponents(g: Graphics): void Paints each of the components in this container.

The get and set methods for these data fields ar
the class, but omitted in the UML diagram for bre

Jjavax.swing.JComponent i

-toolTipText: String The tool tip text for this component. Tool tip text is displayed when
the mouse points on the component without clicking.

-border: javax.swing.border Border The border for this component.

Borders

You can set a border on any object of the
JComponent class. Swing has several types of
borders. To create a titled border, use

new TitledBorder(String title).

To create a line border, use
new LineBorder(Color color. int width),
where width specifies the thickness of the line.

For example, the following code displays a
titled border on a panel:

JPanel panel = new JPanel();
panel.setBorder(new TitleBorder(“My Panel”));

36

Test Swing Common Features

Component Properties JComponent Properties

font e LoolT1ipText

background e border
foreground

preferredSize
minimumSize
maximumSize

TestSwingCommonFeatures -

37

Image Icons

Java uses the javax.swing.Imagelcon class to represent
an 1con. An 1con 1s a fixed-size picture; typically 1t 1s
small and used to decorate components. Images are
normally stored 1n image files. You can use new
Imagelcon(filename) to construct an image icon. For
example, the following statement creates an icon from
an 1mage file us.gif in the image directory under the
current class path:

Imagelcon icon = new Imagelcon("image/us.gif"):

Testlmagelcon -

38

Splash Screen

A splash screen 1s an 1image that 1s displayed while the
application 1s starting up. If your program takes a long
time to load, you may display a splash screen to alert
the user. For example, the following command:

java —splash:image/us.gf Testimagelcon

displays an image while the program Testlmagelcon is
being loaded.

39

