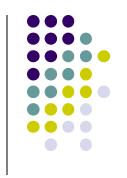

ЕСДП

В настоящее время большинство стран мира применяет системы допусков и посадок ИСО. Системы ИСО созданы для унификации национальных систем допусков и посадок с целью облегчения международных технических связей в металлообрабатывающей промышленности. Включение международных рекомендаций ИСО в национальные стандарты создает условия для обеспечения взаимозаменяемости однотипных деталей, составных частей и изделий, изготовленных в разных странах. Единая система допусков и посадок (ЕСДП) и основные нормы взаимозаменяемости базируются на стандартах и рекомендациях ИСО.

- В машиностроении большинство соединяемых деталей условно можно разделить на две группы: валы и отверстия.
- Вал термин, условно применяемый для обозначений наружных элементов деталей, включая и нецилиндрические элементы.
- Отверстие термин, условно применяемый для обозначения внутренних элементов деталей, включая и нецилиндрические элементы.

Основной вал — вал, верхнее отклонение которого равно нулю. Основное отверстие — отверстие, нижнее отклонение которого равно нулю.

- 1. Размер числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения.
- 2. Действительный размер размер элемента, установленный измерением с допускаемой погрешностью. Это размер, который выявляется экспериментальным путем, т.е. измерением.
- 3. Предельные размеры два предельно допустимых размера элемента, между которыми должен находиться (или быть им равным) действительный размер. (наибольший предельный размер и наименьшим предельным размером).


- 4. **Номинальный размер** это размер, относительно которого определяются отклонения.
- 5. Отклонение алгебраическая разность между соответствующим (предельным или действительным) размером и номинальным размером.
- **Верхнее отклонение** алгебраическая разность между наибольшим предельным размером и номинальным размером.
- Нижнее отклонение алгебраическая разность между наименьшим предельным размером и номинальным размером.

Отклонение имеет знак (+), (-) или (0).

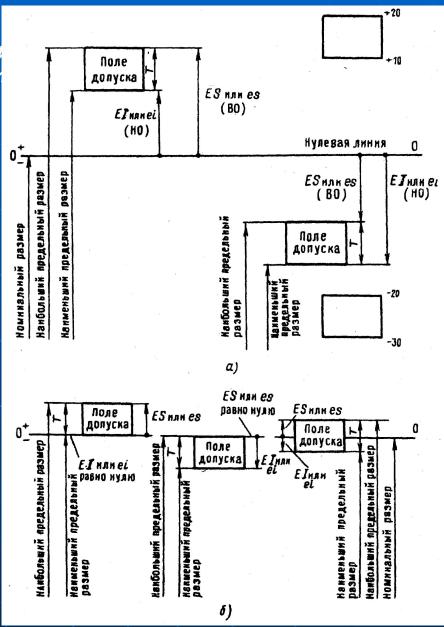
ES (Ecart Superieur)
EI (Ecart Interieur)

Отклонения отверстий обозначают большими буквами, а для валов- маленькими.

ESВерхнее отклонение

25+0,3 -0,2 Поле допуска

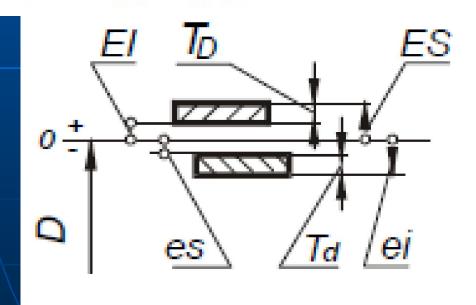
Номинальны й размер

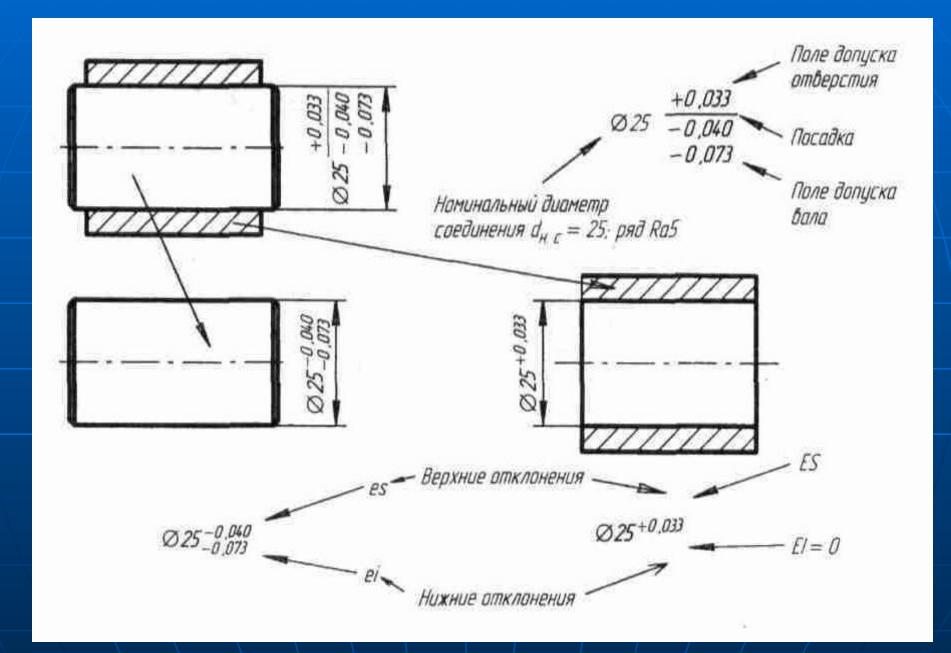

> нижнее отклонение ЕІ

6. Допуск (обычно обозначается «Т») — разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями.

Примечание. **Допуск** — это абсолютная величина без знака.

- 7. Нулевая линия линия, соответствующая номинальному размеру, от которой указывают отклонения размеров при графическом изображении полей допусков и посадок..
- 8. Поле допуска поле, ограниченное наибольшим и наименьшим предельными размерами, определяющими допуск и его положение относительно номинального размера.


Поля допусков отверстий обозначают большими буквами, а для валов- маленькими.



Действительное отклонение: $E_r = D_r - D$; $e_r = d_r - d$ Верхнее отклонение: $ES = D_{max} - D$; $es = d_{max} - d$ Нижнее отклонение: $EI = D_{min} - D$; $ei = d_{min} - d$ Среднее отклонение: $E_{cp} = 0.5(ES + EI)$; $e_{cp} = 0.5(es + ei)$

Значение допуска можно выразить и через отклонения: $TD = D_{max} - D_{min} = D + ES - (D + EI) = ES - EI$

$$Td = d_{max} - d_{min} = d + es - (d + ei) = es - ei$$

Номинальный размер 25 мм
Верхнее отклонение +0,3
Нижнее отклонение -0,2
Наибольший размер 25,3 мм
Наименьший размер 24,8 мм
Допуск размера 0,5 мм

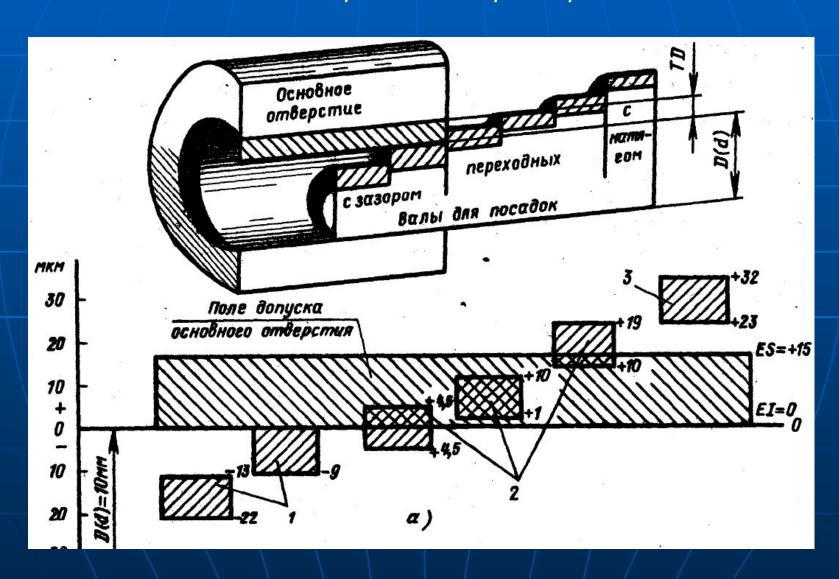
25+0,3 -0,2

Разница записи в нанесении размера с отклонениями по ГОСТ и ISO:

Обозначение допусков и посадок на чертеже:

гост	Ø50 ^{+0,2} _{-0,3}	Ø50 ^{+0,025}	Ø50 _{-0.017}	Ø50±0,2
ISO	+0,2 Ø50-0,3	+0,025 Ø50 0	0 Ø50–0,017	Ø50±0,2

Разработана единая система, названная «Единая система допусков и посадок СЭВ», сокращенно ЕСДП

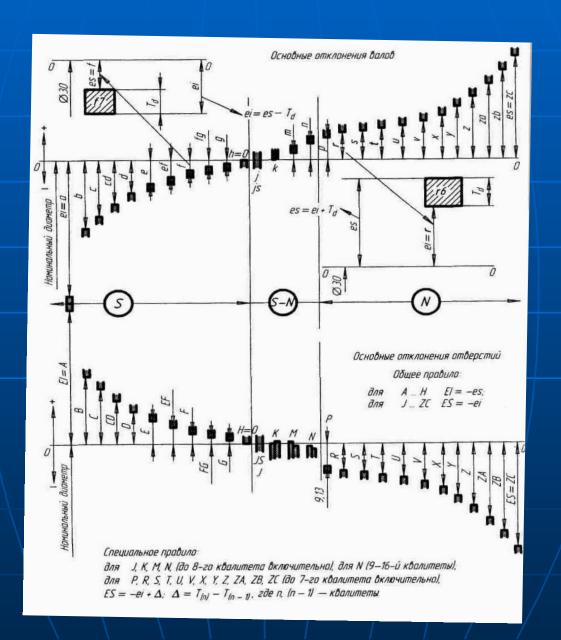

СЭВ или просто ЕСДП

- Для системы допусков и посадок выделено шесть признаков.
- 1. Посадки в системе отверстия и в системе вала.
- 2. Единицы допуска.
- 3. Квалитеты .
- 4. Поля допусков отверстий и валов.
- 5. Интервалы размеров.
- 6. Нормальная температура.

система вала — система, в которои при ооном и том же номинальном размере, одной и той же точности изготовления предельные размеры вала остаются постоянными, а требуемый характер посадки осуществляется за счет изменения предельных размеров отверстия.

номинальном размере, одной и той же точности изготовления предельные размеры отверстия остаются постоянными, а требуемый характер посадки осуществляется за счет изменения предельных размеров вала.

Основы построения ЕСДП изложены в ГОСТ 25346-89 «Основные нормы взаимозаменяемости. Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений».


Интервалы номинальных размеров.

С целью упрощения таблиц допусков и посадок номинальные размеры разбиты на диапазоны и интервалы.

Номинальные размеры, охватываемые ЕСДП, разбиты на следующие диапазоны:

I диапазон - до 1 мм; II диапазон от 1 до 500 мм; III диапазон от 500 до 3150 мм; IV диапазон от 3150 до 10000 мм; V диапазон от 10000 до 40000 мм.

Отклонения

Единица допуска

(используется для вычисления величины допуска на размеры)

$$i = 0.45\sqrt[3]{D_{\text{Hcp}}} + 0.001D_{\text{Hcp}}$$
,

где $D_{\text{иср}} = \sqrt{D_{\text{нм}}D_{\text{нб}}}$ — среднее геометрическое крайних размеров каждого интервала, мм; i — единица допуска, мкм.

Например, для интервала свыше 6 до 10 мм $D_{\rm ucp} = \sqrt{60} \approx 7,7$. Для первого интервала размеров до 3 мм принято $D_{\rm ucp} = \sqrt{3}$.

В системе ОСТ для размеров до 500 мм

$$i=0.5\sqrt[3]{D_{\rm ucp}} \ ,$$

где $D_{\text{иср}} = (D_{\text{нм}} + D_{\text{нб}})/2$ — среднее арифметическое значение интервала номинальных размеров, мм. Например, для интервала размеров свыше 6 до 10 мм: $D_{\text{иср}} = (10 + 6) / 2 = 8$. Значения единиц допуска в системах ЕСДП и ОСТ близки.

■ **Квалитет** (класс точности, степень точности) – это совокупность допусков, соответствующих одному уровню точности для всех номинальных размеров.

Стандарт предусматривает 19 квалитетов: 01; 0; 1; 2; 3; 4... 17.,

по ISO- 20 квалитетов, есть еще 18 квалитет.

Наивысшей точности соответствует 01 квалитет, низшей- 18 квалитет. Квалитеты 7 и 8 являются наиболее распространенными.

Допуск по 8 квалитету обозначается так: IT8 (IT – International Tolerance (международный допуск)).

Квалитемы 4-й и 5-й применяются сравнительно редко, в особо точных соединениях, требующих высокой однородности зазора или натяга (приборные подшипники в корпусах и на валах, высокоточные зубчатые колеса на валах и оправках в измерительных приборах).

Квалитемы 6-й и 7-й применяются для ответственных соединений в механизмах, где к посадкам предъявляются высокие требования в отношении определенности зазоров и натягов для обеспечения точности перемещений, плавного хода, герметичности соединения, механической прочности сопрягаемых деталей, а также для обеспечения точной сборки деталей (подшипники качения нормальной точности в корпусах и на валах, зубчатые колеса высокой и средней точности на валах, подшипники скольжения и т.п.).

Квалитемы 8-й и 9-й применяются для посадок при относительно меньших требованиях к однородности зазоров или натягов и для посадок, обеспечивающих среднюю точность сборки (посадки с зазором для компенсации погрешностей формы и расположения сопрягаемых поверхностей, опоры скольжения средней точности, посадки с большими натягами).

Квалитет 10-й применяется в посадках с зазором и в тех же случаях, что и 9-й, если условия эксплуатации допуска ют некоторое увеличение колебания зазоров в соединениях.

Квалитеты 11-й и 12-й применяются в соединениях, где необходимы большие зазоры и допустимы их значительные колебания (грубая сборка). Эти квалитеты распространены в неответственных соединениях машин (крышки, фланцы, дистанционные кольца и т.п.).

Поля допусков отверстий при номинальных размерах от 1 до 500 мм. Предельные отклонения по ГОСТ 25346

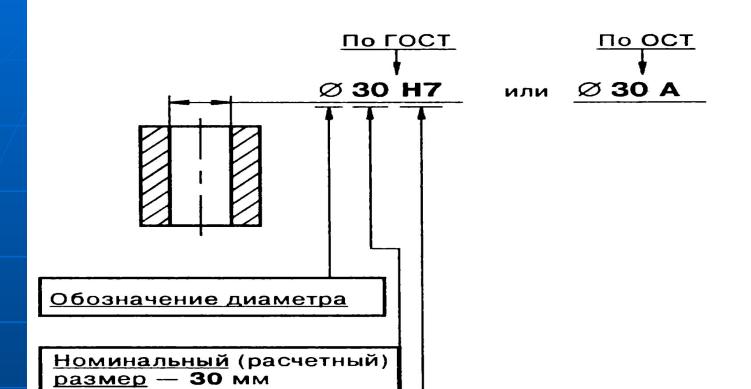
Интервал					Поля	доп	уско	3			
размер	размеров, мм		E9	Н9	F8	Н8	H7	ls7	K7	N7	P7
Свыше	До		Пре	едел	ьные отклонения, мкм						
1	3	+60 0	+39 +14	+25 0	+20 +6	+14 0	+10 0	±5	0 -10	-4 -14	+60 0
3	6	+75 0	+50 +20	+30 0	+28 +10	+18 0	+12 0	±6	+3 -9	-4 -16	-8 -20
6	10	+90 0	+61 +25	+36 0	+35 +13	+22 0	-15 0	±7	+5 -10	-4 -19	-9 -24
10	18	+110 0	+75 +32	+43	+43 +16	+27 0	+18 0	±9	+6 -12	-5 -23	-11 -29
18	30	+130 0	+92 +0	+52 0	+53 +20	+33 0	+21 0	±10	+6 -15	-7 -28	-14 -35
30	50	+160 0	+112 +50	+62 0	+64 +25	+39 0	+25 0	±12	+7 -18	-8 -33	-17 -42
50	80	+190 0	+134 +60	+74 0	+76 +30	+46 0	+30 0	±15	+9 -21	-9 -39	-21 -51
80	120	+220 0	+1 59 +72	+87 0	+90 +36	+54 0	+35 0	±17	+10 -25	-10 -45	-24 -59
120	180	+250 0	+185 +85	+100 0	+106 +43	+63 0	+40 0	±20	+12 -28	-12 -52	-28 -68
180	250	+290 0	+215 +100	+115 0	+112 +50	+72 0	+46	±23	+13 -33	-14 -60	-33 -79
250	315	+320 0	+ 240 +110	+130 0	+137 +56	+81 0	+52 0	±26	+16 -36	-14 -66	-36 -88
315	400	+360 0	+ 265 +125	+140 0	+151 +62	+89 0	+57 0	±28	+17 -40	-16 -73	-41 -98
400	500	+400 0	+290 +135	+155 0	+165 +68	+97 0	+63 0	±31	+18 -45	-17 -80	-45 -108

Примечание. В таблице приведены предпочтительные поля допусков 7, 8, 9 и 11-го квалитетов по ГОСТ 25347.

Поля допусков валов при номинальных размерах от 1 до 500 мм. Предельные отклонения по ГОСТ 25346

Интервал размеров, мм				Пол	ля допу	усков			
		d11	h11	d9	h9	e8	h8	f7	h7
Свыше	До		Пре цельные отклонения, мкм						
1	3	-20 -80	0 -60	-20 -45	0 -25	-14 -28	0 -14	-6 -16	0 –10
3	6	-30 -105	0 -75	-30 -60	0 -30	-20 -38	0 -18	-10 -22	0 -12
6	10	-40 -130	0 -90	-40 -76	0 -36	-25 -47	0 -20	-13 -28	0 -15
10	18	- 50 -160	0 -110	-50 -93	0 -43	-32 -59	0 -27	-16 -34	0 -18
18	30	-65 -195	0 -130	-65 -117	0 -52	-46 -73	0 -33	-20 -41	0 -21
30	50	- 80 -240	0 -160	-80 -142	0 -62	-50 -89	0 -39	-25 -50	0 -25
50	80	- 100 -290	0 -190	-100 -174	0 -74	-60 -106	0 -46	-30 -60	0 -30
80	120	-120 -340	0 -220	-120 -207	0 -27	-72 -126	0 -54	-36 -71	0 -35
120	180	-1 45 -395	0 -250	-14 -24	0 -100	-85 -148	0 -63	-43 -83	0 -40
180	250	-170 -400	0	-170 -285	0 -115	-100 -172	0 -72	-50 -96	0 -46
250	315	-190 -510	0 -320	-190 -320	0 -130	-110 -191	0 -81	-56 -108	0 -52
315	400	-210 -570	0 -360	-210 -350	0 -140	-125 -214	0 -89	-62 -119	0 -57
400	500	-230 -630	0 -400	-230 -385	0 -155	-135 -232	0 -97	-68 -131	0 -63

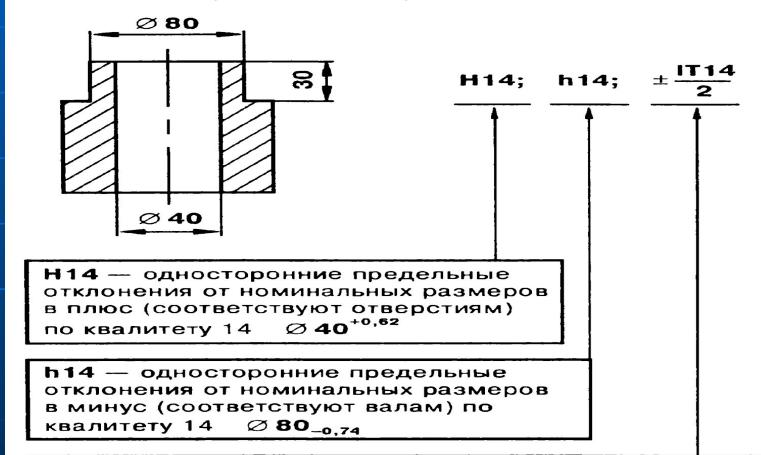
Поля допусков валов при номинальных размерах от 1 до 500 мм. Предельные отклонения по ГОСТ 25346

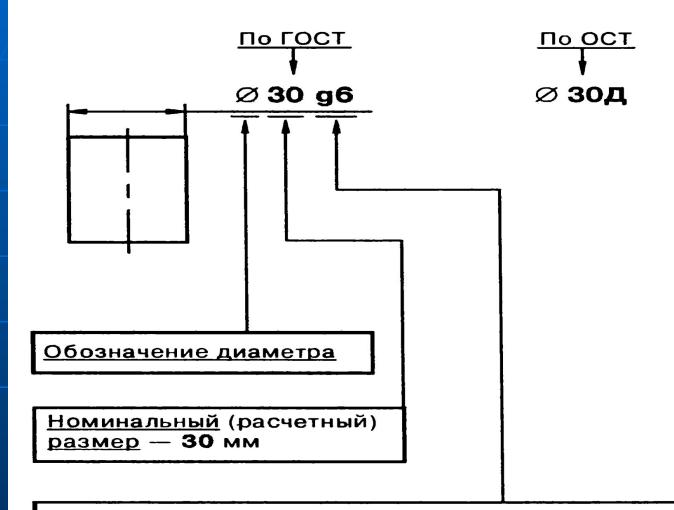

Интервал размеров, мм				Пол	у до.	усков			
		d11	h11	d9	h9	e8	h8	f7	h7
Свыше	До		Пределене отклонения, мкм						
1	3	-20 -80	0 -60	-20 -45	0 -25	-14 -28	0 -14	-6 -16	0 –10
3	6	-30 -105	0 -75	-30 -60	0 –30	-20 -38	0 -18	-10 -22	0 -12
6	10	-40 -130	0 -90	-40 -76	0 -36	-25 -47	0 -20	-13 -28	0 –15
10	18	- 50 -160	0 -110	-50 -93	0 -43	-32 -59	0 -27	-16 -34	0 -18
18	30	-65 -195	0 -130	-65 -117	0 -52	-46 -73	0 -33	-20 -41	0 -21
30	50	- 80 -240	0 -160	-80 -142	0 -62	-50 -89	0 -39	-25 -50	0 -25
50	80	- 100 -290	0 -190	-100 -174	0 -74	-60 -106	0 -46	-30 -60	0 -30
80	120	-120 -340	0 -220	-120 -207	0	-72 -126	0 -54	-36 -71	0 -35
120	180	-1 45 -395	0 -250	-145 -245	0 –100	85 148	0 -63	-43 -83	0 -40
180	250	-170 -460	0 -290	-170 -285	0 -115	-100 -172	0 -72	-50 -96	0 -46
250	315	-190 -510	0 -320	-190 -320	0 -130	-110 -191	0 -81	-56 -108	0 -52
315	400	-210 -570	0 -360	-210 -350	0 -140	-125 -214	0 -89	-62 -119	0 -57
400	500	-230 -630	0 -400	-230 -385	0 -155	-135 -232	0 -97	-68 -131	0 -63

150 h9

100 мкм =0,1 мм

MM 100,0


I WKW =



<u>Буква</u> — обозначение поля допуска отверстия Н по ГОСТ 25347 или А по ОСТ								
<u>Цифра-квалитет</u> по ГОСТ	Н6	Н7	Н8	Н9	H10	H11	H12	
Класс точности по ОСТ (класс 2 не обозначается)	A,	A	A _{2a}	A_3	A _{3a}	A ₄	A ₅	
Предельные отклонения по ГОСТ 25347 для Ø 30		+0,021	+0,033	+0,052	+0,084	+0,13	+0,21	

Обозначение предельных отклонений размеров с неуказанными допусками по ГОСТ 25670

Неуказанные предельные отклонения относительно низкой точности (от 12-го квалитета и грубее) обозначаются в технических требованиях чертежа

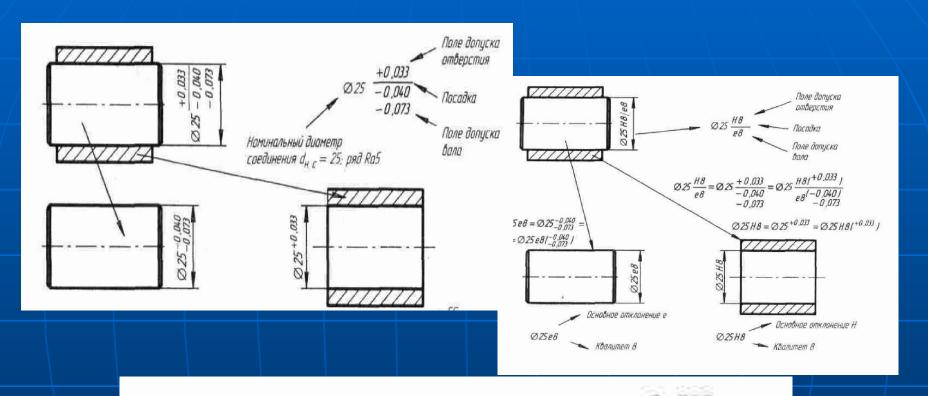
Буква — обозначение поля допуска вала соответствующей посадки. По ГОСТ строчная буква латинского алфавита **д**, по ОСТ буква русского алфавита **д**. Цифра-квалитет **6**, 7, 8 по ГОСТ или класс точности 1, **2**, 2a, 3, 3a, 4, 5 по ОСТ (класс 2 не обозначается) **Поле допуска отверстия Н7**

Основное Отклонение Н

Квалитет точности отверстия 7

 $172\frac{H}{n6}$

Посадка

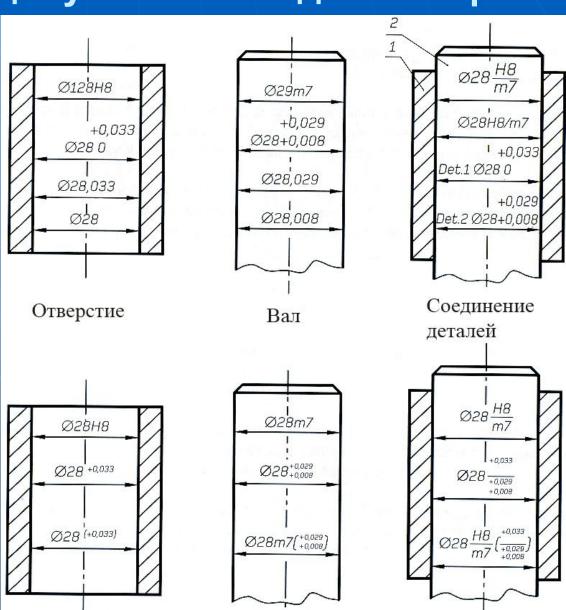

Номинальный размер Квалитет точности вала 6

Основное отклонение n

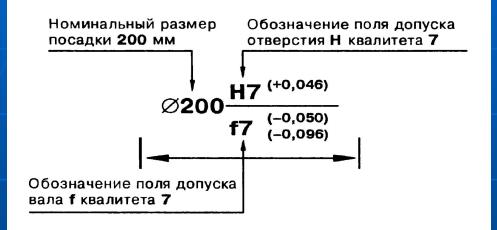
Поле допуска вала пб

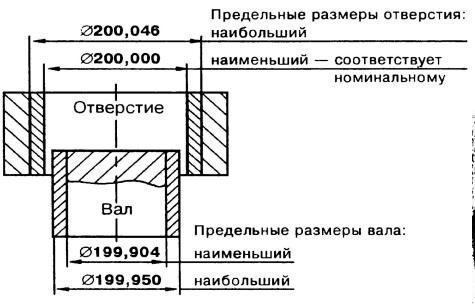
Посадка — характер соединения деталей, определяемый значениями получающихся в ней зазоров и натягов.

Посадки в системе отверстия и в системе вала

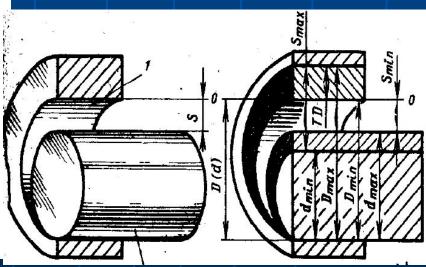

$$\varnothing 25 \frac{H8}{e8} = \varnothing 25 \frac{+0.033}{-0.040} = \varnothing 25 \frac{H8(^{+0.033})}{e8(^{-0.040})} = \varnothing 25 \frac{H8(^{+0.033})}{e8(^{-0.040})}$$

Поле допуска отверстия всегда указывается в числителе дроби, а поле допуска вала— в знаменателе.


Обозначение допусков и посадок на чертеже:

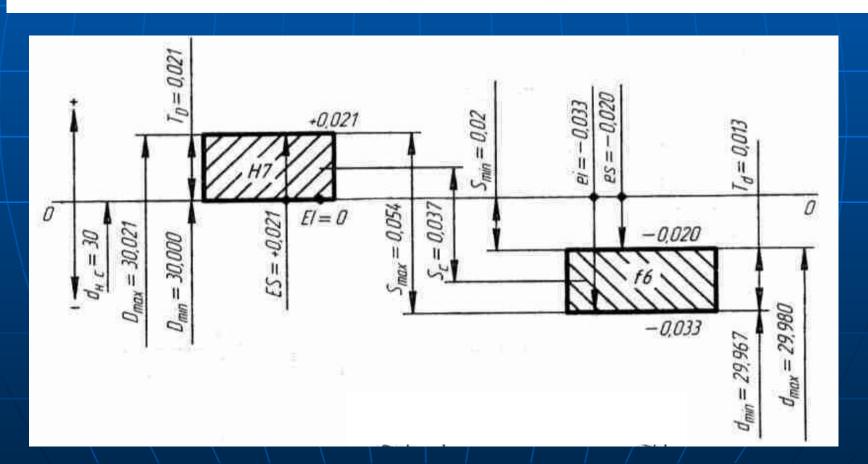

Πο ISO

По ГОСТ


Посадки с зазором h, g, f, e, d (подвижные) в системе отверстия

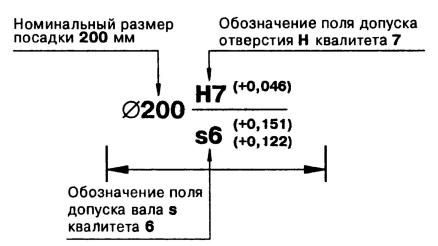
Наибольший зазор 200,046 - 199,904 = 0,142 Наименьший зазор 200,0 - 199,95 = 0,05

Зазор — разность между размерами отверстия и вала до сборки, если размер отверстия больше размера вала.



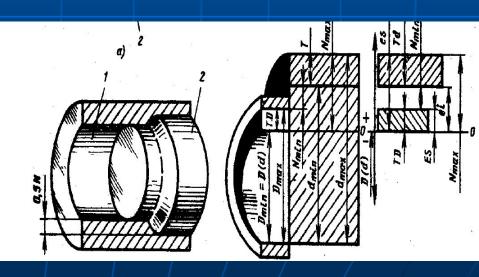
Зазором (S) называется положительная разность размеров отверстия и вала, когда D > d: S = D - d.

наименьшим (гарантированным) $S_{min} = D_{min} - d_{max};$ наибольшим $S_{max} = D_{max} - d_{min};$ средним $S_{cp} = (S_{max} + S_{min}) / 2$.

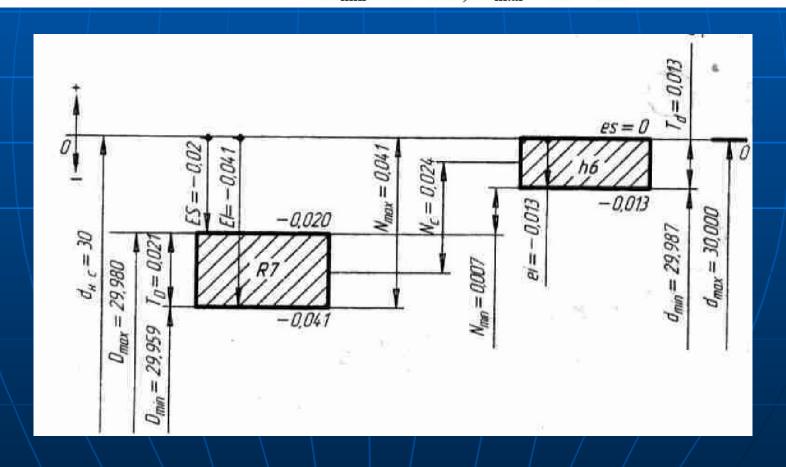

Через отклонения предельные зазоры вычисляются следующим образом:


$$S_{min} = EI - es$$
; $S_{max} = ES - ei$.

Посадки с зазором применяются в неподвижных и подвижных соединениях, для облегчения сборки при невысокой точности центрирования, для регулирования взаимного положения деталей, для обеспечения смазки трущихся поверхностей (подшипники скольжения) и компенсации тепловых деформаций, для сборки деталей с антикоррозийными покрытиями


Посадки с натягом s, r, p (неподвижные) в системе отверстия

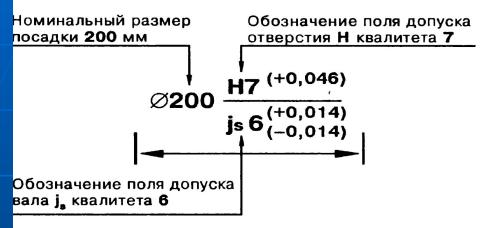
Натяг — разность между размерами вала и отверстия до сборки
Наибольший натяг 200,151 — 200,0 = 0,151
Наименьший натяг 200,122 — 200,46 = 0,076

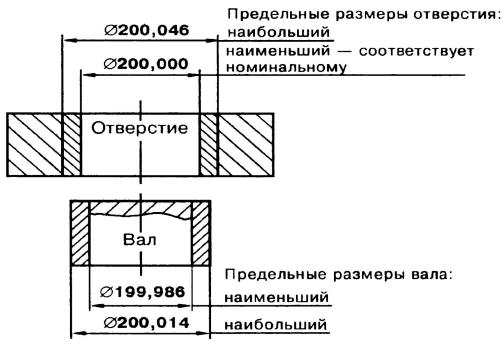

Натяг — разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия.

Натизгом (N) называется положительная разность размеров вала и отверстия, когда d > D: N = d - D (= - S)

наименьшим (гарантированным) $N_{min} = d_{min} - D_{max};$ наибольшим $N_{max} = d_{max} - D_{min};$ средним $N_{cp} = (N_{max} + N_{min}) / 2.$

Через отклонения предельные натяги вычисляются следующим образом: $N_{min} = ei - ES; N_{max} = es - EI.$

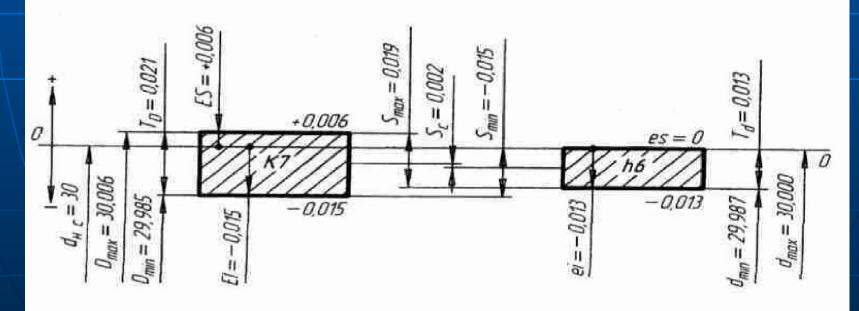



Посадки с минимальным гарантированным натягом (H7/p6, P7/h6, H6/p5, P6/h5) применяют при малых нагрузках и для уменьшения деформаций собранных деталей; неподвижность соединения обеспечивают дополнительным креплением; эти посадки допускают редкие разборки.

Посадки с умеренными гарантированными натягами (H7/r6, H7/s6, H8/s7, H7/t6, R7/h6) допускают передачу нагрузок средней величины без дополнительного крепления, а также с дополнительным креплением; могут применяться для передачи больших нагрузок, если прочность деталей не позволяет применить посадки с большими натягами; сборка может производиться под прессом или способом термических деформаций.

Посадки с большими гарантированными натягами (H7/v8, H8/v8, U8/h7, H8/x8, H8/z8) передают тяжелые и динамические нагрузки без дополнительного крепления; необходима проверка соединяемых деталей на прочность; сборка осуществляется в основном способом термических деформаций.

Посадки переходные j_e, k, п (возможно получение в соединении как зазора, так и натяга) в системе отверстия



Наибольший зазор 200,046 - 199,986 = 0,06 Наибольший натяг 200,014 - 200,0 = 0,014

Переходные посадки обладают возможностью получить при сборке соединения как зазоры, так и натяги. В этом случае поля допусков отверстия и вала перекрываются частично или полностью. Такие посадки характеризуются наибольшим зазором (S_{max}) и наибольшим натягом (N_{max}), величины которых рассчитываются по формулам, приведённым выше.

Если при расчёте параметров переходной посадки величина $S_{max} > N_{max}$, то определяют средний зазор по формуле $S_{cp} = (S_{max} - N_{max}) / 2$, и тогда про переходную посадку говорят, что она *с вероямностью зазора*.

Если при расчёте получилось, что величина $N_{max} > S_{max}$, то определяют средний натяг по формуле $N_{cp} = (N_{max} - S_{max}) / 2$, а про посадку говорят, что она *с вероятностью натяга*.

Посадки с более вероятными натягами

(H7/m8, M7/h6, H7/h6) применяют при больших ударных нагрузках, при повышенной точности центрирования и редких разборках, а также при затрудненной сборке вместо посадок с минимальным гарантированным натягом.

Посадки с равновероятными натягами и зазорами

(H7/k6, K7/h6) имеют наибольшее применение из переходных посадок, так как для сборки и разборки не требуют больших усилий и обеспечивают высокую точность центрирования.

Посадки с более вероятными зазорами

(H7/js6, Js7/h6) применяют при небольших статических нагрузках, частых разборках и затрудненной сборке, а также для регулирования взаимного положения деталей.