СПЕКТРОСКОПИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ОБЩИЕ АСПЕКТЫ СПЕКТРОСКОПИИ

СПЕКТР ЭЛЕКТРОМАГНИТНЫХ ВОЛН

10 îi 20	00íì 400í	ì 78	0îì 110	00îì 5	0ìêì 3	0ñì
 pãåíîâñêîå Äàëüíÿÿ ëó÷åíèå (âàêóóìíàÿ) ÓÔ	Áëèæíÿÿ (êâàðöåâàÿ) ÓÔ	Âèäèìàÿ îáëàñòü		Äàëüíÿÿ ÈÊ		Đàäèîâîëíû

Вид спектроскопии	Интервал длин волн
УФ - спектроскопия	200 (190) — 400нм
Видимая спектроскопия	400 — 780нм
ИК - спектроскопия	2,5 — 15 мкм
Микроволновая спектроскопия	Микроволновая область
ЯМР - спектроскопия	Радиоволновая область

Характеристики электромагнитного излучения

- Частота излучения(v) [c⁻¹]
- Длинна волны (λ) [м]
- Волновое число (v[~]) [м⁻¹]
- Скорость света в вакууме $(c = 3.10^8)$ [м/c]
- Энергия излучения (Е) [Дж]

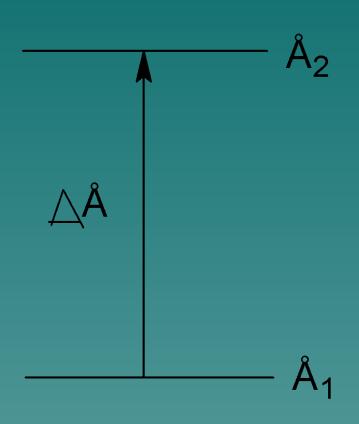
КВАНТОВАНИЕ ИЗЛУЧЕНИЯ

Постулат Планка: излучение распространяется в пространстве и времени не непрерывным потоком, а отдельными порциями квантами.

$$\mathsf{E} = \mathsf{h} \mathsf{v} \tag{1}$$

Основные взаимосвязи между характеристиками излучения

$$C = \lambda v \tag{2}$$


$$\mathbf{v}^{\sim} = 1/\lambda \tag{3}$$

$$E = hv = hc/\lambda = hcv^{\sim}$$
 (4)

Чем выше частота и волновое число и излучения тем больше его энергия и меньше длинна волны.

Чем меньше длинна волны тем больше энергия излучения.

Происхождение спектров

$$\triangle A = A_2 - A_1 = hv$$

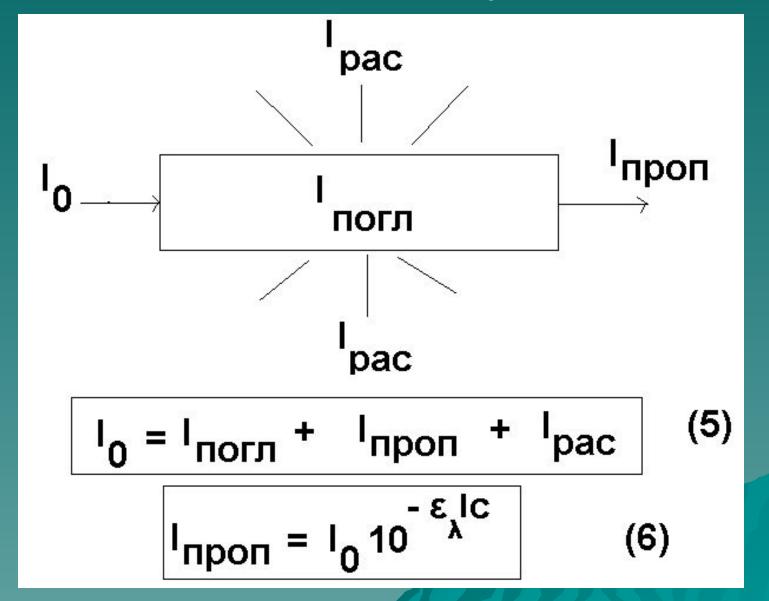
$$v = (A_2 - A_1)/h$$

Составляющие энергии молекулы

$$E_{\text{мол}} = E_{\text{эл}} + E_{\text{кол}} + E_{\text{вр}}$$
 $E_{\text{мол}}$ - энергия молекулы;
 $E_{\text{эл}}$ - электронная энергия;
 $E_{\text{кол}}$ - колебательная энергия;
 $E_{\text{кол}}$ - вращательная энергия.

$$E_{_{\mathfrak{I}\mathfrak{I}}} >> E_{_{\mathrm{KOJ}}} >> E_{_{\mathrm{BP}}}$$

Иерархия энергетических уровней молекулы



Разновидности спектральных методов

Вид спектроскопии	Переход между:
УФ - спектроскопия	Электронными
	подуровнями
Видимая	Электронными
спектроскопия	подуровнями
ИК - спектроскопия	Колебательными
	подуровнями
Микроволновая	Вращательными
спектроскопия	подуровнями
ЯМР - спектроскопия	Расщепленными
	ядерными
	подуровнями

УФ и видимая – спектроскопия (UV-VIS)

Закон Ламберта – Бугера - Бера


```
    интенсивность падающего

   излучения [Дж/c]
       - интенсивность поглощенного
ПОГЛ
        излучения [Дж/с]
І<sub>проп</sub> - интенсивность пропущенного
       излучения [Дж/с]
      - интенсивность рассеяного
pac
       излучения [Дж/с]
ε - молярный коэффициент
<sup>λ</sup> поглощения при длине волны λ
 [л/(моль см)]
- длина кюветы [см]
с - молярность [моль/л]
```

Оптическая плотность и пропускание

Оптическая плотность

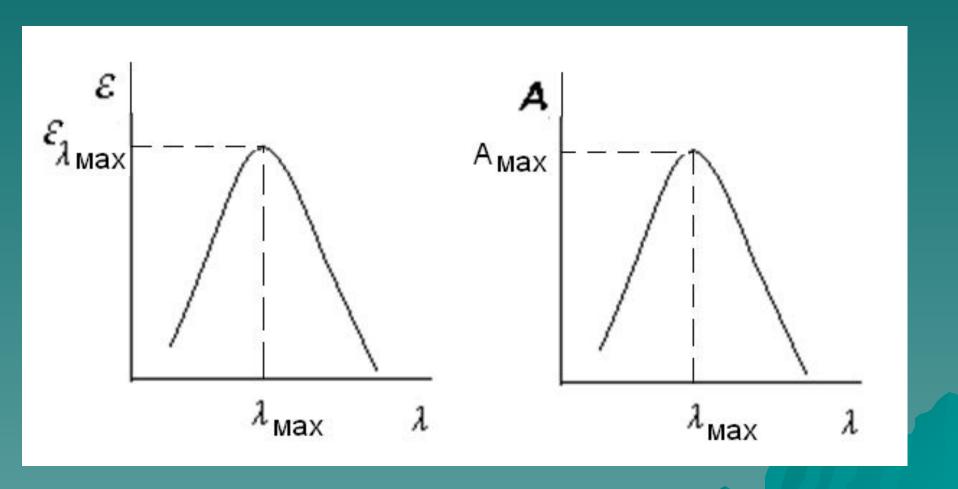
$$A = \lg(I_0/I)$$

• Пропускание

$$T = I/I_0$$

Закон Ламберта – Бугера – Бера

$$I/I_0 = 10^{-\epsilon_{\lambda}lc}$$
 $-lg(I/I_0) = \epsilon_{\lambda}lc$
 $A = \epsilon_{\lambda}lc$


Закон Бугера – Ламберта – Бера справедлив:

- 1) Для монохроматического света, т. е. света с постоянной длиной волны.
- 2) Для растворов веществ в которых отсутствуют процессы ассоциации и диссоциации молекул.
- 3) Строго справедлив для большинства веществ при A<1

УФ - видимым спектром называется зависимость оптической плотности поглощения вещества или молярного коэффициента поглощения от длины волны в диапазоне длин волн принадлежащих УФ и видимой областям шкалы электромагнитного излучения.

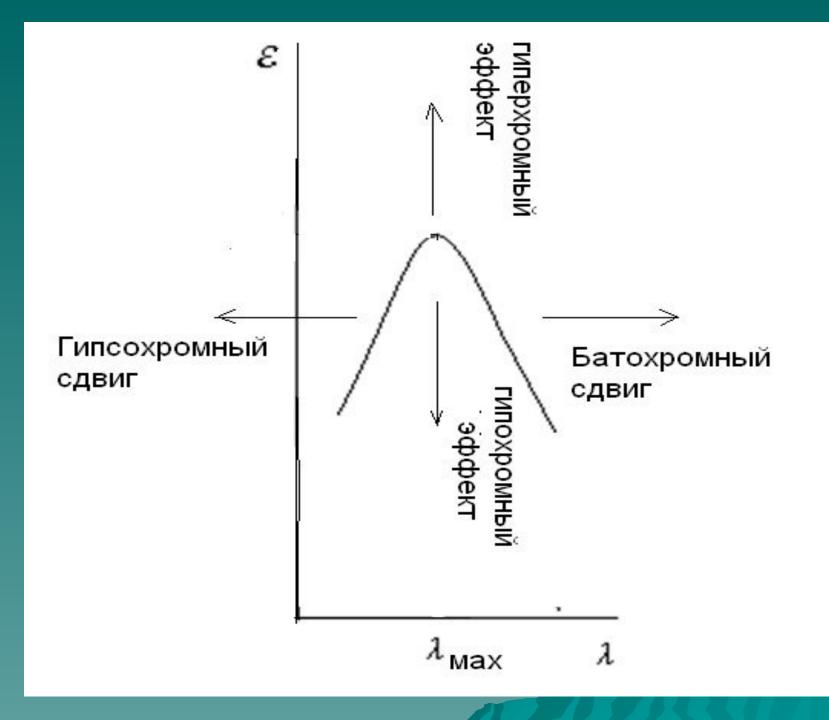
$$\mathcal{E} = f(\lambda)$$
- УФ - видимый спектр
 $A = f(\lambda)$

Характеристики полос поглощения в УФ - спектрах

Классификация полос поглощения по интенсивности

- 1. Интенсивное поглощение ($\varepsilon_{\lambda} > 10^4$);
 - 2. Поглощение средней интенсивности $(10^3 < \varepsilon_{\lambda} < 10^4);$
- 3. Малоинтенсивное поглощение ($\epsilon_{\lambda} < 10^3$).

Основные определения

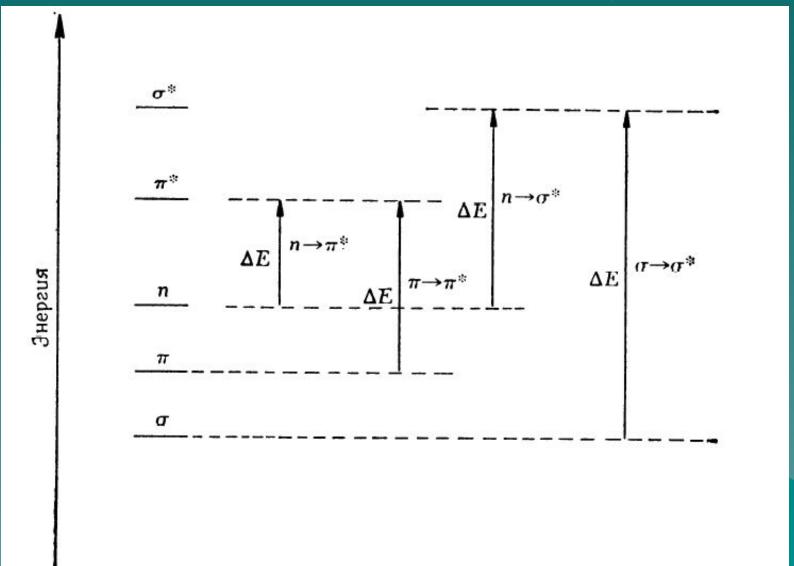

Под влиянием различных факторов (изменение заместителей, растворителя, температуры) возможно изменение как интенсивности поглощения, так и энергии поглощаемого излучения, причем.

Батохромный сдвиг — сдвиг полосы поглощения в сторону больших длин волн.

Гипсохромный сдвиг – сдвиг полосы поглощения в сторону меньших длин волн.

Гиперхромный эффект — увеличение интенсивности полосы поглощения.

Гипохромный эффект – уменьшение интенсивности полосы поглощения.


Качественный анализ в УФ - спектроскопии

Виды электронов в органических молекулах

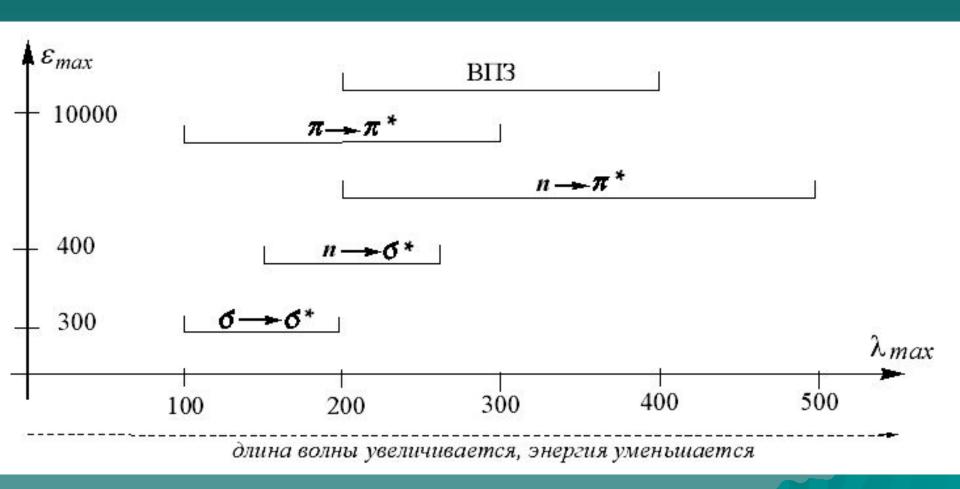
- 1) σ электроны это электроны σ связей.
- 2) π электроны это электроны π связей.
- 3) п— электроны это электроны неподеленных электронных пар.

$$_{\rm H_3C}$$
 — $_{\rm CH_3}$ $_{\rm H_3C}$ — $_{\rm OH}$ $_{\rm H_2C}$ $_{\rm H_2C}$ $_{\rm H_3C}$ $_$

Диаграмма энергетических уровней

Соотношение энергий электронных переходов

$$E_{\sigma - \sigma^*} > E_{n - \sigma^*} > E_{\pi - \pi^*} > E_{n - \pi^*}$$


Уменьшение энергии электронного перехода

$$\lambda_{\sigma-\sigma^*} < \lambda_{n-\sigma^*} < \lambda_{\pi-\pi^*} < \lambda_{n-\pi^*}$$

Увеличение длины волны поглощения

Спектроскопия УФ- и видимого диапазона

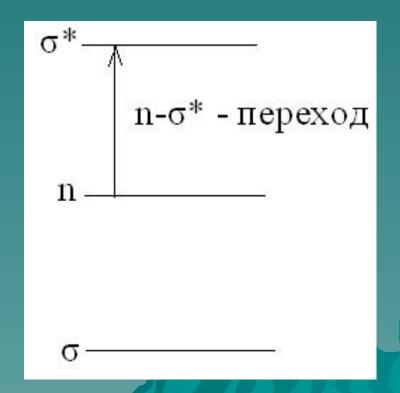
Общая картина переходов

Спектроскопия УФ- и видимого диапазона

Общая картина переходов

	S S	<u>5</u>		(5)
Tun		ОПИСАН	UE	
пере		влияние	кислая	положение полосы в
хода	структура полос	полярности	среда	спектре, ε _{тах}
		растворителя		
σ→σ*				дальняя УФ-обл, от 100
			ő	до 200 нм, є 200-300
$\pi \rightarrow \pi^*$	заметна в большинст-	переходы	не	среднияя и ближняя УФ-
	ве растворителей;	сдвигаются в	влияет	область, от130 до 300 нм
	набор колебательных	батохромную		(в зависимости от С=С
	полос для С=С св	сторону		связи) $\varepsilon_{\text{max}} > 10.000$
		(красную)		
$n \rightarrow \pi^*$	отчетливая в неполяр-	переходы	исче-	ближняя УФ-область
	ных растворителях;	сдвигаются в	зает	или видимая;
	размазанная в поляр-	гипсохром-		от 250 до 500 нм,
	ных; набор колеба-	ную (синюю)		ε _{max} 10-400 (низкая)
	тельных полос С=О св	область		
n→σ*				средняя УФ-область,
				от 190 до 250 нм,

По причине поглощения кислорода и азота атмосферы при длинах волн меньших 180нм УФ и видимые – спектры снимаются в диапазоне длин волн 200 (190) - 900HM.


σ-σ* - переходы

- Требуют значительного количества энергии,
 проявляются при наиболее коротких волнах в
 дальней УФ области.
- 2) Отсутствуют в УФ-спектрах (ближняя УФ область)
- 3) Характерны для любых молекул.
- 4) Исключительно σ - σ * переходы среди органических соединений наблюдаются только в спектрах алканов в вакуумном УФ.
- 5) Алканы совершенно прозрачны в кварцевой УФ-области.

$$H_2$$
 $\lambda_{\text{max}} = 110 \text{HM}$ $CH_3 - CH_3$ $\lambda_{\text{max}} = 135 \text{HM}$

n-σ* - переходы

- Характерны для насыщенных органических соединений, содержащих гетероатомы: галогенопроизводных, спиртов, аминов, тиолов, сульфидов и.т.д.
- 2) Энергетические уровни таких молекул условно могут быть выражены схемой:

- 3) Чем меньше разница в энергиях σ^* и n уровней, тем в более длинноволновой области проявляется \mathbf{n} - $\mathbf{\sigma}^*$ переход.
- 4) $n-\sigma^*$ переходы наблюдаются в области 170-250 нм.
- 5) Разница в энергиях σ* и n уровней тем меньше, чем выше энергия n уровня, т.е. чем большей энергией обладают электроны неподеленных электронных пар гетероатома.
- 6) Чем больше радиус гетероатома, меньше его электроотрицательность и выше поляризуемость, тем больей энергией обладают электроны его неподеленных электронных пар.

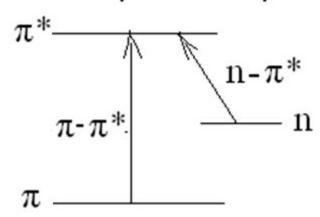
электроотрицательность -F -Cl -Br -I радиус, поляризуемость -F -Cl - не поглощают в кварцевой УФ -Br - проявляется "плечо" -I - поглощает в кварцевой УФ

Поглощение насыщенных соединений, годержащих гетероатомы (переход $n \to \sigma^*$)

Соединежи	A _{contex} , HM	e _{max}	Растноритель.		
Метиловый свирт	177	200	Гексан		
Ди-и-бутвисульфид	210	1200	Эталовый спирт		
	229 (s)				
Да-ч-бутил дисульфи д	204	2089	> >		
	251	398			
Гексантиол-1	224(s)	126	Циклогенсан		
Гриметиламиз	199	3950	Гексан		
N-Металиноридия	213	1600	Эфир		
Хлористый метил	173	200	Гексан		
Вромистый и-пропил	208	300	>		
Иодистый метил	259	400	>		

Определения

- Хромофор ковалентно ненасыщенная группа обуславливающая поглощение (C=C, C=O, C=NH, C≡N).
- Ауксохром насыщенная группа, которая будучи присоединена к хромофору изменяет как интенсивность, так и длину волны, соответствующую максимуму поглощения этого хромофора (NH₂, Cl, OH).


Хромофоры:

- 1) Обуславливают интенсивное поглощение за счет реализации π π^* переходов.
- 2) Если строение хромофора таково, что в его состав входят атомы имеющие неподеленную электронную пару, то наряду с π π^* переходами наблюдаются π π^* переходы.
- 3) Полосы поглощения обусловленные п п* переходами более интенсивны и проявляются при меньшей длине волны, чем полосы обусловленные n п* переходами.
- 4) Энергетические уровни хромофоров не содержащих и содержащих неподеленные электронные пары приведены ниже:

А) Хромофор без неподеленных электронных пар

Б) Содержащий неподеленные электронные пары

Поглощение обусловленное изолированными хромофорами

- Поглощение изолированных (несопряженных) хромофоров характеристично.
- 2) УФ спектр молекулы, содержащей только изолированные хромофоры можно представить суммой УФ спектров поглощения этих хромофоров.

По-лощение изолированных хромофоров

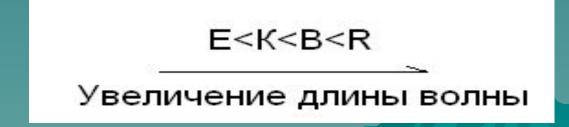
Хромофориал группа	Системя	Пример	λ _{max} , ни	O _{TLAK}	Пореход	Растворитель
Этиленовая	RCH=CHR	Этилен	165 193	15 000 10 000	$\pi \rightarrow \pi^*$ $\pi \rightarrow \pi^*$	Газ
Ацетиленовая	R-C=C-R	Ацетилен	173	6 000	$\pi \to \pi^{\alpha}$	>
Карбоинльная	RR _I C=O	Ацетон	188 279	900 15	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$	и-Гексан
Карбонильная	RHC=O	Ацетальдегид	290	16	$n \rightarrow \pi^*$	Гептан
Карбоксильная	ROOOH	Уксуская кислота	204	60	$n \rightarrow n^*$	Вода
Амидиая	RCONH ₂	Ацетамид	< 208	-	$n \rightarrow \pi^*$	_
Азомезиновая	C=N-	Ацетоксим	190	5 000	$\pi \to \pi^*$	Вода
Нитрильная	_C=N	Ацетопитрия	< 160	-	$\pi \to \pi^*$	_
A30	-N-N-	Азометан	347	4,5	$n \rightarrow \pi^*$	Диоксан
Нитрозо	—N=O	Нятрозобутая	300 665	100 20		Эфир
Нитратная	-0NO ₂	Этванитрат	270	12	$n \rightarrow \pi^*$	Диоксан
Нитро	-N_0	Нигрометан	271	18,6	$n\to n^4$	Спирт
Нетритная	омо	Амилинтрит	218,5 346,5 a	1120	$n \rightarrow n^*$ $n \rightarrow n^*$	Петролейный эфир
Сульфоксидная	>s−o	Циклогенсияметия- сульфоксия	210	1500		Спирт
Сульфоновая	\s\0,	Дяметилсульфов	< 180	_		_

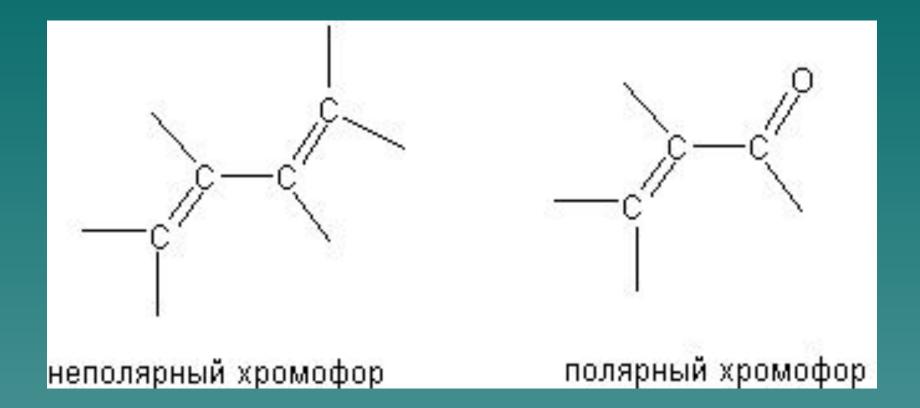
^а Наиболее интенсивный пик группы полос тонкой структуры.

Таблица типов влектронных орбиталей и переходов

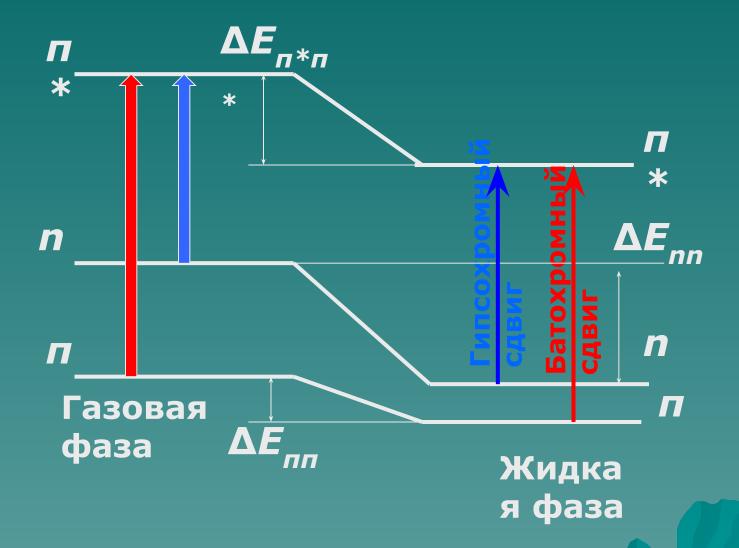
Тип электрониой орбитали	Пример	Электрониый переход	λ _{māx} .	o _{max}	По- лесь ^в [4,24]	
σ	Этан	$\sigma \rightarrow \sigma^*$	135	_	_	
n	Вода	$n \rightarrow \sigma^{\bullet}$	167	7 000	_	
	Метанол	M> CF*	183	500		
	Гексантиол-1	$n \rightarrow \alpha$	224	126	-	
	к-Бутилиодид	$n \rightarrow \sigma^*$	257	486	-	
TL.	Этибен	$\pi \rightarrow \pi^*$	165	10 000	-	
	Ацетилен	$\pi \rightarrow \pi^*$	173	6 000	_	
пня 🚤	Ацетон	$\pi \rightarrow \pi^*$	Около 150	_	_	
		$n \rightarrow \sigma^*$	188	1 860	-	
		$n \rightarrow \pi^*$	279	15	R	
п—п	Буталиен-1,3	$\pi \rightarrow \pi^*$	217	21 000	K	
	Гексатриен-1,3,5	$n \rightarrow n^*$	258	35 000	-K	
n-n = n	Акролени	$\pi \rightarrow \pi^{+}$	210	11 500	κ	
		$n \rightarrow m^*$	315	1.4	R	
Арометическая л	Бензол	Ароматиче- ский л → л*	Около 180	60 000	E_1	
		То же	Oxo.00 200	8 000	E_2	
		>	255	215	B	
Ароматическая	Стирол	>	244	12000	K	
x-x		>	262	450	B	
Ароматическая	Толуол	3	208	2 460	E_{x}	
я — σ (сверх- сопряженная)	* ************************************	>	262	174	B	
Арометическая	Ацетофенон	>	240	13 000	κ	
≖ − ≈ н п	-	Ароматиче- ский л → п*	278	1110	B	
		$n \rightarrow \pi^{+}$	319	50	R	
Ароматическая п—в (аукео-	Фенол	Ароматиче- ский л → л*	210	6 200	E_{2}	
хромная)		То же	270	1 450	B	

 $^{^{\}rm a}$ R-nonces or newconcoro radikalartig. K-monoca or newconcoro konjuglerte; B-nonces or astronóctoro betternoid $^{\rm a}$ —бензондная; E-nonces от автинаского ethylenic—этиленовия [4.54].

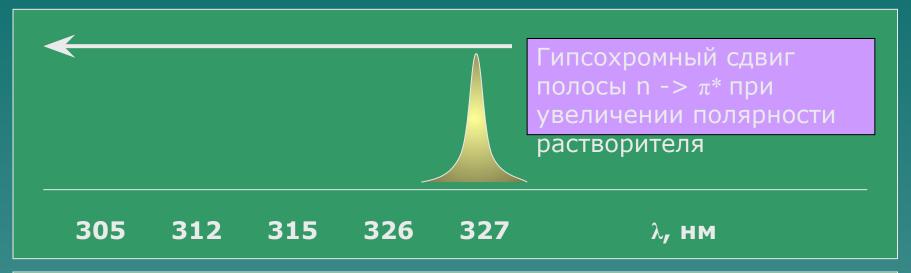

Типы полос поглощения в УФ-спектрах

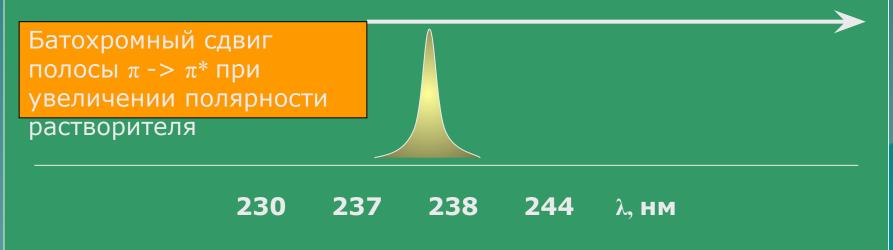

R-полосы

- 1) Обусловлены запрещенным n π^* переходом.
- 2) Малоинтенсивны ($\epsilon_{\lambda} < 200$)
- 3) Проявляются в длинноволновой области.
- 4) Проявляют гипсохромный сдвиг при увеличении полярности растворителя.
- 5) Проявляются у хромофоров с гетероатомами несущими неподеленные электронные пары (C=O, C=N, C=S, S=O и.т.д.


К-полосы

- Обусловлены разрешенными п п* переходами.
- 2) Высокоинтенсины ($\epsilon_{\lambda} > 10^4$)
- 3) Проявляются при меньших длинах волн чем R- и Bполосы, однако более длинноволновые чем E-полосы.
- 4) Характерны для всех изолированных и сопряженных хромофоров, причем сопряжение приводит к их батохромному сдвигу с гиперхромным эффектом.
- 5) Если сопряженные хромофоры полярны, то увеличение полярности растворителя приводит к батахромному сдвигу К-полос. Если сопряженные хромофоры неполярны, то полярность растворителя существенно не сказывается на положение К-полос поглощения.




Влияние растворителя

Правило Мак-Конела

вода

r estronomeges on

Влияние полярности растворителя на спектр окиси мезитила

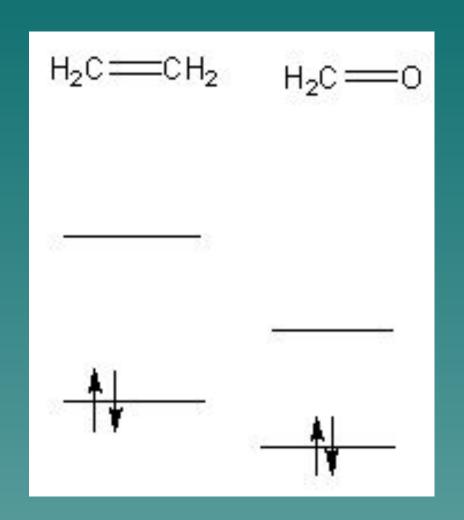
	Переход					
Растворитель	$u \rightarrow u_s$ (y^{ulux} .	пм)	$n \rightarrow \pi^*$ ()	max. HM)		
Изсоктан	230,6		32	21		
Хлороформ	237,6		31	4		
Вода	242,6	Πe	ерекрыта	К-полосой		

В и Е полосы

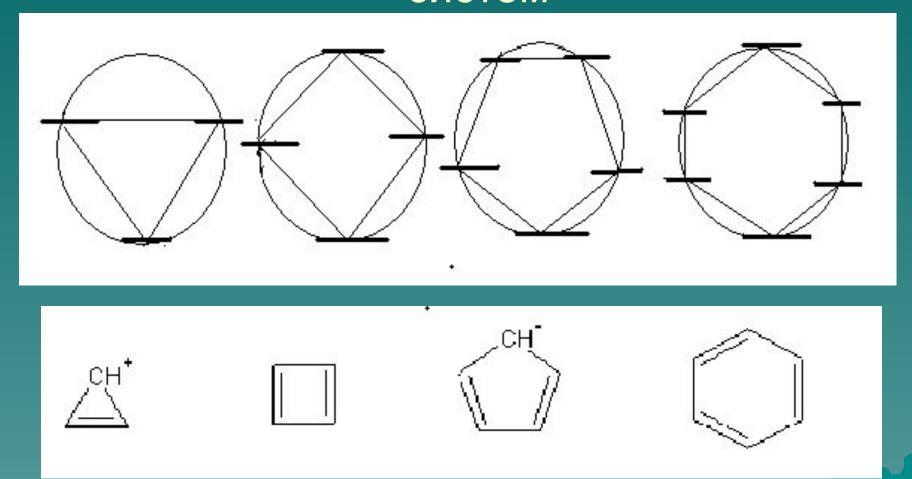
- Являются специфическими и проявляются в ароматических соединениях (бензолах).
- 2) Обусловлены $\pi \pi^*$ переходами.
- 3) В-полоса проявляется при больших длинах волн, чем Е-полоса.
- 4) Е-полосы являются результатом разрешенного электронного перехода и интенсивны.
- 5) В-полосы являются результатом запрещенного электронного перехода и малоинтенсивны.

Орбитали π — сопряженных систем

1) Являются решениями уравнения Шредингера для молекулы:


$H\psi = E\psi$

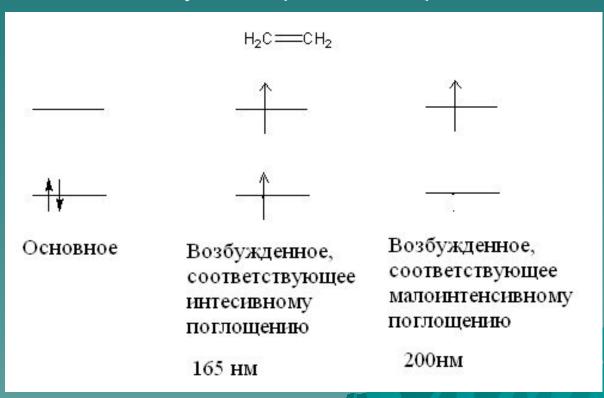
- 2) Решением уравнения Шредингера является набор собственных функций ψ и отвечающих им значений Е. Е, ψ энергия и волновая функция энергетического уровня (молекулярной орбитали).
- 3) В п-приближении энергетические уровни п-систем строятся по следующим правилам:


А) Ациклические π-системы

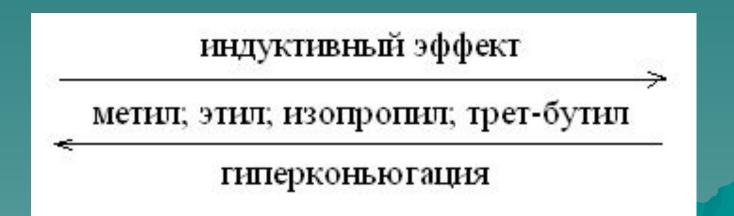
- Число орбиталей равно числу атомов находящихся в сопряжение.
- 2) Каждый атом углерода сопряженной системы вносит один п электрон. Если гетероатом участвует в образовании двойной связи, то он вносит также один электрон, а если связан простой связью с псистемой, то он вносит два электрона.
- 3) Введение электроноакцепторных групп приводит к уменьшению энергии всех МО, причем в наибольшей степени высокоэнергетических (высоколежащих)
- 4) Ведение электронодонорных групп повышает энергии всех МО, причем в набольшей степени низкоэнергетических (низколежащих).

5) Чем больше протяженность п – системы, тем меньше различие в энергиях π -орбиталей, входящих в сопряженную систему.

Б) Энергетические уровни циклических систем



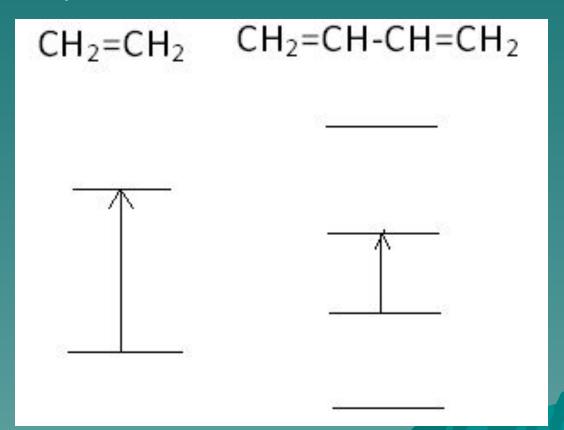
Поглощение сопряженных хромофоров


- энергетической щели между ВЗМО и НСМО и способствует уменьшению энергии необходимой для осуществления возбуждения электронных переходов, т.е. приводит к батохромному сдвигу с гиперхромным эффектом.
- 2) Сопряжение хромофоров с ауксахромами также приводит к батохромному сдвигу с гиперхромным эффектом, однако меньшим по величине, чем в случае сопряжение двух хромофоров.
- Примечание: большинство хромофоров (кроме C=C и C_6H_5 -) обладают M эффектом, а ауксохромы +M эффектом.

Этиленовый хромофор

- Этилен имеет две области поглощения: интенсивное при 165нм и малоинтенсивное при 200нм.
- 2) Такое поглощение является аномальным и связано с возможностью двухэлектронного перехода.

- Введение ауксохромов приводит к батохромному сдвигу с гиперхромным эффектом, причем тем большим по величине, чем больше +М-эффект ауксохрома (Cl < -OH <NH₂).
- 2) Алкильное замещение также приводит к батахромному сдвигу с гиперхромным эффектом, однако меньшим по величине, чем достигаемым при ауксохромном замещении.
- 3) Алкильные заместители обладают двумя противоположно направленными эффектами:

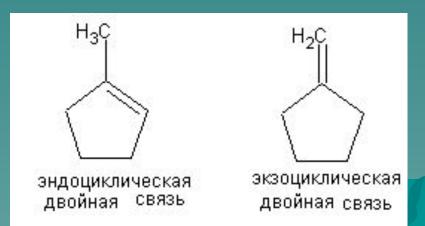


- 4) Индуктивный эффект и эффект гиперконьюгации способствуют батахромному сдвигу с гиперхромным эффектом. Вопрос лишь в соотношении этих эффектов.
- 5) В подавляющим большинстве случаев большее значение имеет эффект гиперконьюгации, однако этиленовый хромофор является исключением.

Соединение	λ_{max} , нм	lg ε	Соединение	λ_{max} , нм	lg ε
CH ₂ =CH ₂	163	>1	иис-CH ₃ CH=CH-CH ₃	175	4.3
C1CH=CH ₂	185	-	транс-СН3СН=СН-СН3	177	4.1
C1 ₂ C=CH ₂	192	-	HC≡CH	173	>1
C1 ₂ C=CHC1	196	-	RC≡CH	187	-
C1 ₂ C=CC1 ₂	197	-	RC≡CR	190.5	3.0
CH ₃ -CH=CH ₂	173	4.2	CH ₂ =CH-CH=CH ₂	217	4.32
C_2H_5 - CH = CH_2	175	4.2	CH ₂ =CH-CH=CH-CH=CH ₂	258	4.32
C ₄ H ₉ CH=CH ₂	179	4.0	CH ₃ -(CH=CH) ₄ -CH ₃	265-320	-

Диеновый хромофор

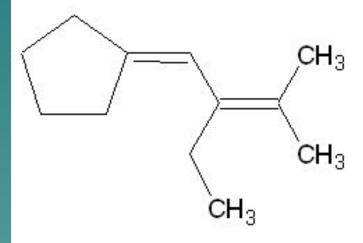
- 1,3-бутадиен имеет интенсивное поглощение в области $\lambda_{\text{max}} = 217$ нм с $\epsilon_{\lambda} = 21000$.
- 2) Ациклические сопряженные диены имеют максимум поглощения в области 215 230нм в зависимости от характера поглощения.



Правила Вудворда

- 1) Введение каждой алкильной группы в диеновый хромофор приводит к батохромному сдвигу полосы поглощения на 5нм.
- 2) Возникновение каждой экзоциклической двойной связи приводит к батохромному сдвигу на 5нм.

$$\lambda = \lambda_6 + \sum \lambda_i$$


- λ₆ длина волны соответствующая поглощению хромофора в соединении, условно выбранным в качестве базового.
- λ_i табличные инкременты для заместителей у хромофора.

Примеры применения правила Вудворда

$$H_2C \longrightarrow CH_3$$
 $H_3C \longrightarrow CH_3$

$$\lambda_{\text{max}} = 217 + 3.5 = 232 \text{HM}$$

$$\lambda_{\text{max}} = 217 + 5.5 + 5 = 247 \text{ HM}$$

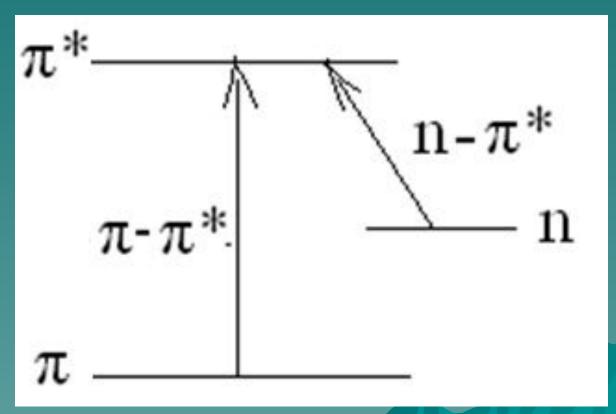
Поглощение сопряженных олефинов

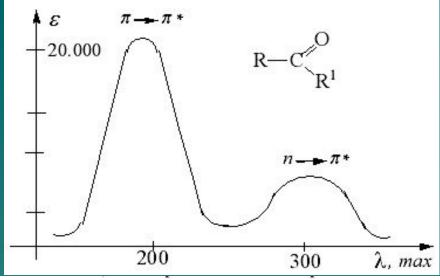
	Переход π →				
Соецинение	A _{max} , mr	· e _{max}	Растворитель		
Бутадлен-1,3	217	21 000	Гексан		
2,3-Диметилбутадиен-1,3	226	21 400	Циклогенсан		
Генсатриен-1,3,5	253	~ 50000	Изосилан		
	263	52 500			
	274	~ 50000			
Циклогексадиен-1,3	256	8 000	Гексан		
Циклопентадиен-1,3	239	3 400	*		

Поглощение циклических диенов

- 1) Диены бывают гетероаннулярные и гомоаннулярные.
- 2) Незамещенные гетероаннулярные диены поглощают при λ_{max} =214нм, а гомоаннулярные при λ_{max} =253нм.
- Гетероаннулярные (ϵ_{λ} =8000 20000)диены поглощают более интенсивно чем гомоаннулярные (ϵ_{λ} 5000 8000). В целом циклические диены имеют менее интенсивное поглощение чем циклические.

Инкременты для расчета поглощения циклических диенов

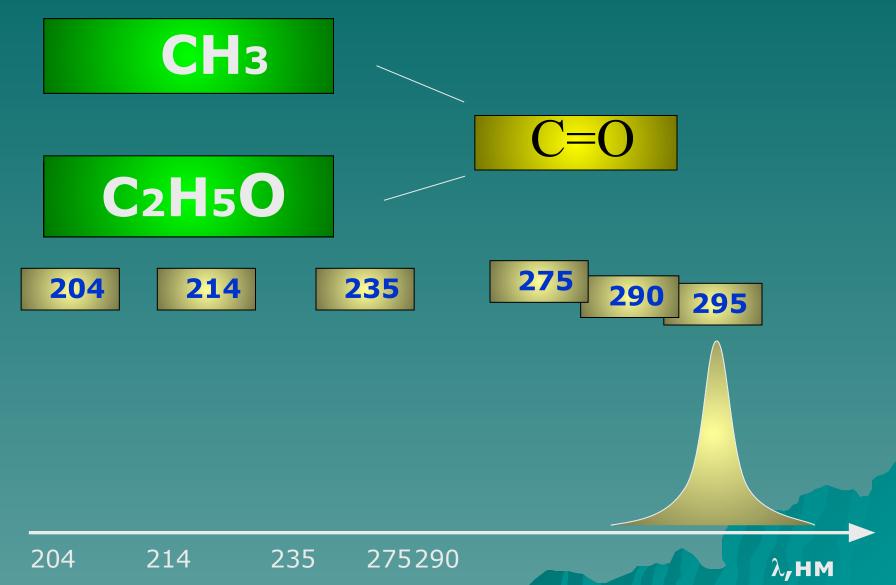

Правила для расчета поглощения диснов [2]


Исходное значение для		
гетеровинулярного двена	214	
гомовинулярного днена	253	
Инкременты для		
сопряженной двойной связи	+30	
алкильного заместителя или связи цикла	45	
визоциклической двойной связи	+5	
полярных групп: ОАс	 +0	
OAlk	+6	
SAIk	+30	
Cl. Br	45	
N(Alk) _s	+60	
поправки на растворитель	+0	

х_{ным} равно общей сумме

Карбонильный хромофор

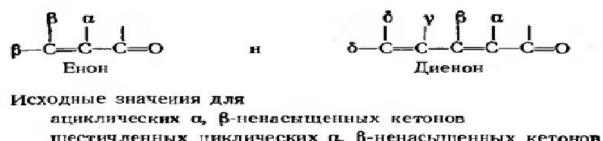
- 1) Карбонильный хромофор проявляет две полосы поглощения, коротковолновую обуславливает π - π * переход (К-полоса около 190нм), а длиноволновую π π * переход (R- полоса около 270-300нм).
- 2) Энергетические уровни карбонильной группы приведены ниже:



7.9	$\pi \rightarrow \pi^*$		$n \rightarrow \pi^*$			$n \rightarrow \pi^*$		
Соединение	λ _{max} ,	ε_{max} $(lg\varepsilon)$	λ _{max} , HM	ε_{max} $(lg \varepsilon)$	Соединение	λ _{max} , ΗΜ	$\mathbf{\epsilon}_{max}$ $(lg \mathbf{\epsilon})$	
H-C H		38	310	15	H ₃ C-COH	204	41 (>1)	
H ₃ C~C H	193	15	292	12	H ₃ C-CCOOC ₂ H ₅	204	60	
H ₃ C-C-CH ₃ O	188	1.860	279	13	H ₃ C-C NH ₂	214		
$H_2C=HC-C$	208	10000 (4.6)	328	(1.41)	H ₃ C-CCO	235	53	
H ₂ C=HC-C-CH ₃	215	10.000	322	10				
o	225	10.500						
C-C-C	335		260					

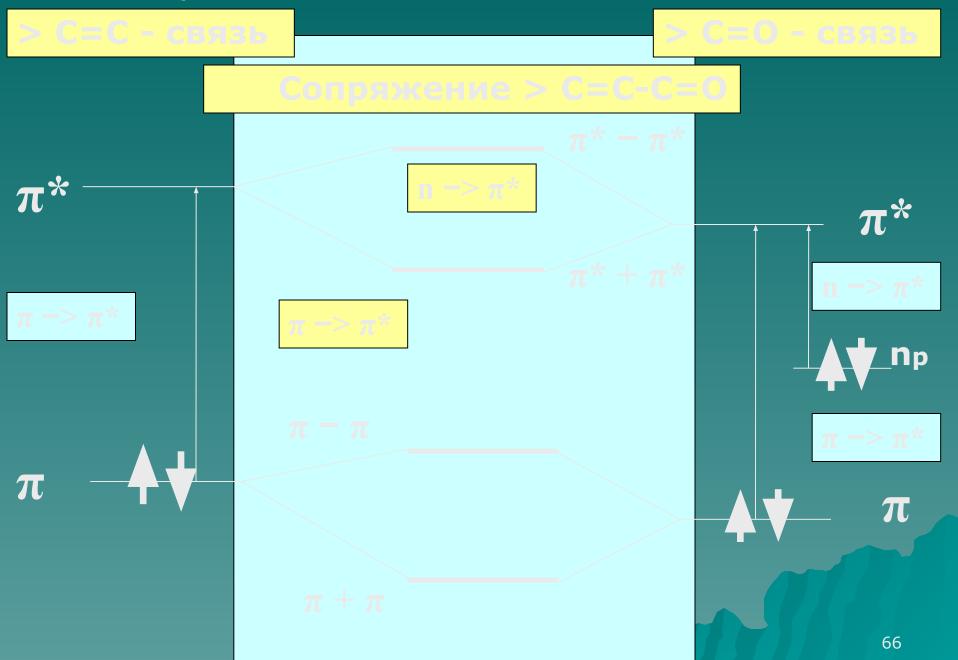
3) Наибольшее значение для идентификации карбонильных соединений имеет R- полоса. Замещение атомов водорода на алкильную или ауксохромную группу приводит к гипсохромному сдвигу, причем длина волны максимума поглощения R-полосы увеличивается в следующем ряду:

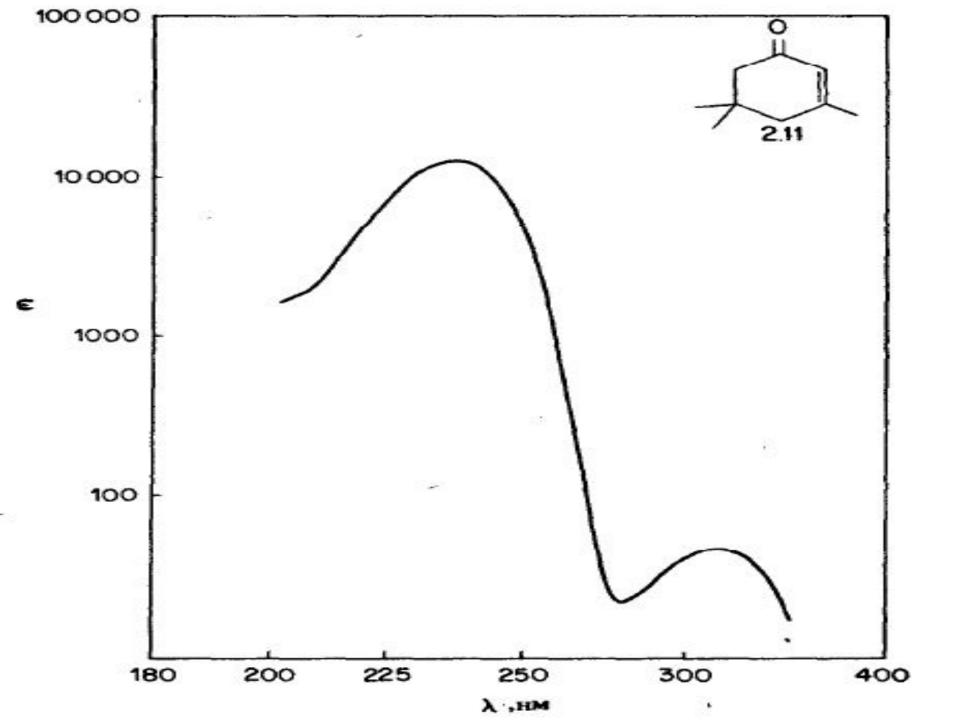
Хромофоры. Ауксохромы.

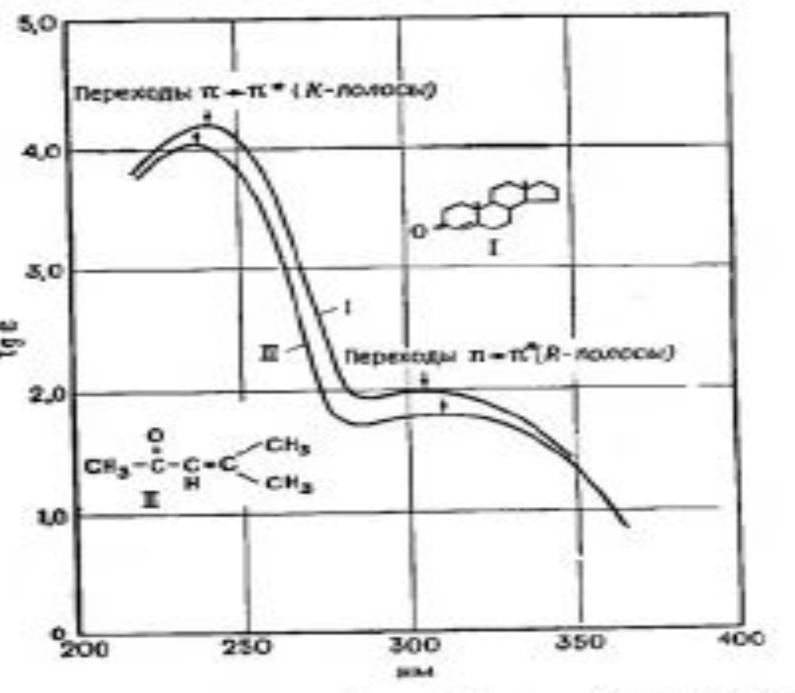


Еноновый хромофор

- толосой (310-330нм) низкой интенсивности и интенсивной К-полосой (215-250нм, ϵ_{λ} =10000 20000)
- 2) Алкильное и ауксохромное замещение смещает Кполосы в сторону более длинных волн (батахромный сдвиг).
- Расчет длины волны поглощения К-полосы сопряженных енонов можно осуществить исходя из соответствующих инкрементов:


$$\lambda = \lambda_6 + \sum \lambda_i$$


- λ₆ длина волны соответствующая поглощению хромофора в соединении, условно выбранным в качестве базового.

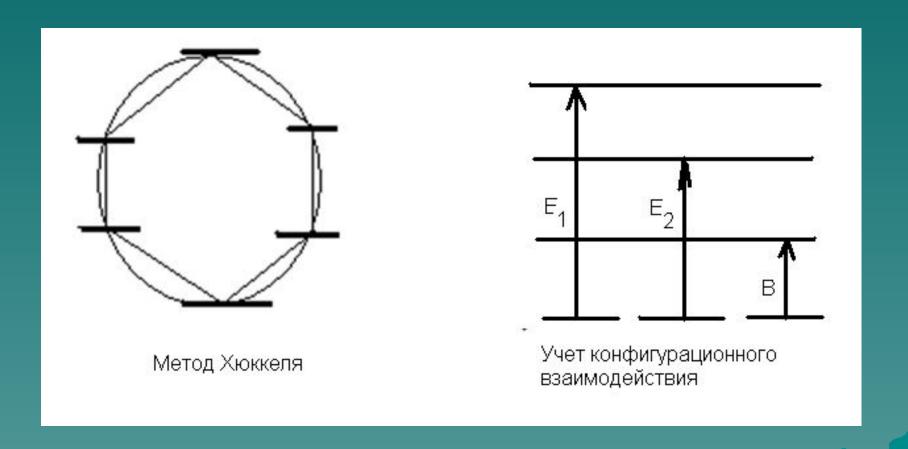


Исходные значения для		
ациклических с, β-ненасыщенны	х кетонов	215
шестичленных циклических а, в	-ненасыщенных кетонов	215
пятичленных циклических α, β-н	ненасыщенных кетонов	202
а, в-ненасыщенных альдегидов		210
а, β-ненасыщенных карбоновых	кислот и сложных эфиров	195
Инкременты для		
сопряжениой двойной связи		+30
алкильной группы, связи цикл	таα	+10
	β	+12
	у и выше	+18
полярных групп: —ОН	α	+35
	β	+30
	8	+50
—OAc	α, β, ὄ	4-6
OMe	α	+35
	β	+30
	γ 8	+17
		+31
—SAlk	β	+85
—C1	α	+15
	β	+12
—Br	α	+25
	β	+30
$-NR_2$	β	+95
экзоциклической двойной связи		+5
гомодиенового фрагмента		+39
поправки на растворитель		Различные
(см. таблицу ниже)		величины

λ_{выч} равно общей сумме ^а

- постоянение колествен-4-син-3 (криная I) и ониси мезитиля (кри-

Правило Вудворда и Физера


ряженных диенов и непредельных сопряженных кетонов в спиртовых растворах

Сопряженные диены	Сопряженные непреде.	пьные	е кет	юны			
Родоначальная структура: а							
фатическая 217, циклическая	2000						
нм	циклом циклом 215 нм						
	R-C-CH=CHR или			O			
Родоначальная моноцикличес	ая циклический кетон с пят	ичле	нным	и циі	клом		
Структура 253 нм	202 им, непредельные альд	202 нм, непредельные альдегиды 207 нм					
	$ \begin{array}{c} \delta \\ \delta \end{array} $ C=C.	β _− α C=C	-<_O	I			
Дополнительные инкрименты	Дополнительные инкримен	ты з	амес	гител	ιей		
заместителей:		α	β	y	σ		
- OAc 0 н	Алкил или циклич. остаток	10	12	18	18		
-алкил, циклический остаток 5 н	M OCOCH3	6	6	6	6		
- OAlk, C1 5 HM	OAlk	35	30	17	31		
-экзоциклич.C=C св 5 нм	-OH	35	30		50		
-S Alk 30 H	4 -Br	25	30				
-увеличение на одну С=С св 30 в	м Экзоциклич.С=С св	5	5	5	5		
- N(Alk) ₂ 60 I	м <u>Увеличение сопряжения</u> - внутри цикла	68	68	68	68		
	DILY IDE HEREVIO	100					

Бензойный хромофор

- 1) Незамещенный бензол имеет три полосы поглощения (E_1, E_2, B) , обусловленные π π^* -переходами, две из которых проявляются в ближней (кварцевой) УФ-области.
- 2) Введение каждого конденсированного бензойного кольца в сопряженную приводит к сильному батохромному сдвигу с гиперхромным эффектом.
- Самая длиноволновая и малоинтенсивная полоса поглощения (В-полоса) часто имеет колебательную структуру при снятии спектров в газовой фазе или неполярном растворителе.
- 4) Ауксохромное и хромофорное замещение приводит к исчезновению колебательной структуры В-полос. К этому же эффекту часто приводит снятие УФ-спектра в полярном растворителе.

Энергетические уровни бензола

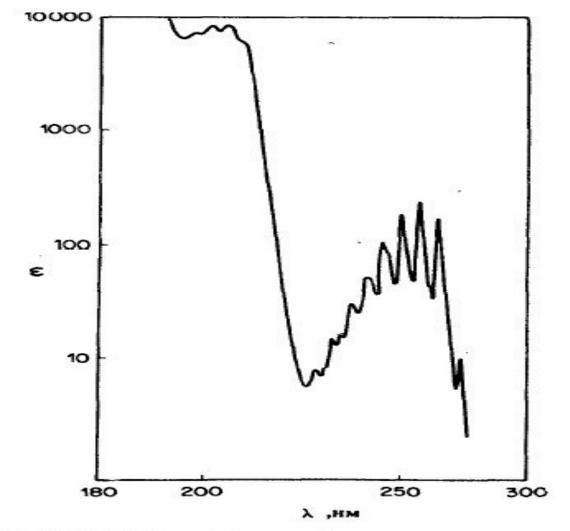
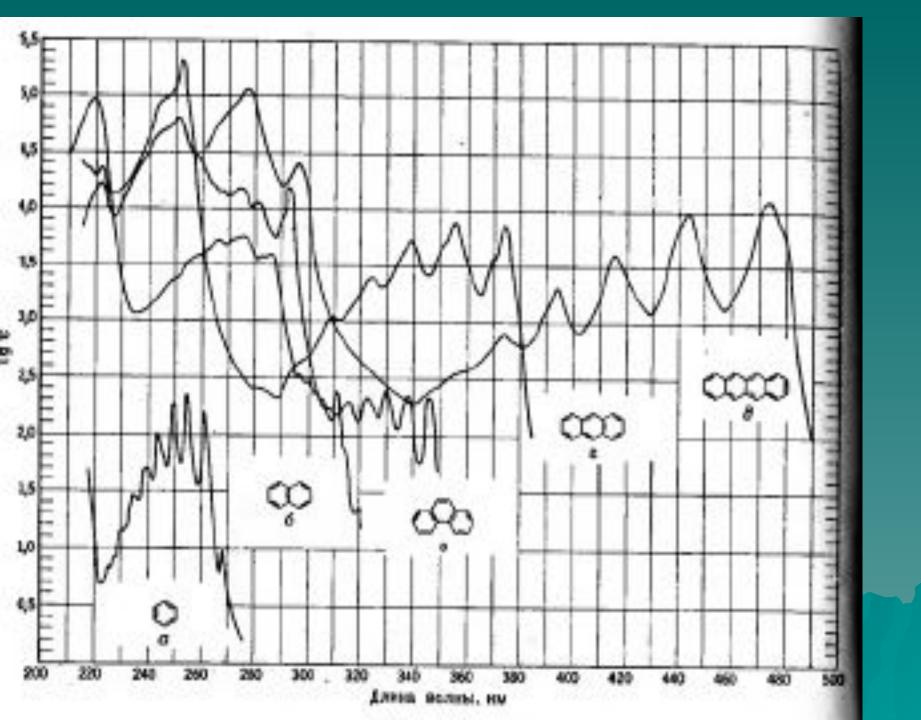
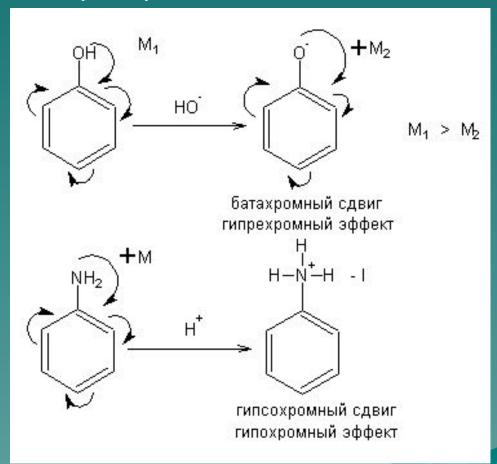



Рис. 2.5. Ультрафиолетовый спектр бензола в гексане. Спектр воспроизведен с разрешения из сборника: UV Atlas of Organic Compounds, Butterworths, London; Verlag Chemie, Weinhelm, 1966 - 1971.

Корреляции полос поглощения ароматических соединений

	EHonoca	$E_{t'}$ Полоса	В-Полоса	
Соединевне	λ _{max} (ma) (* _{max})	A _{max} (me) (* _{max})	λ _{max} (нм) (¢ _{max})	λ _{max} (nn) (8 _{max})
Бензол	184 (60 000)	204 (7 900)	256 (200)	
Нафталин	221 (133 000)	286 (9 300)	312 (289)	
Антрацен	256 (180 000)	375 (9 000)	Перекрыта	221 (14500)



Алкильные замещенные бензола

- 1) Алкильное замещение приводит в батохромному сдвигу В-полосы, однако влияние на положение Е₂ полосы неоднозначно.
- 2) В диалкилзамещенных бензолах положение Вполосы зависит от взаимного расположения заместителей.

Ауксохромное замещение

- 1) Ауксохромное замещение приводит к батахромному сдвигу как В, так и $\rm E_2$ -полосы.
- 2) Поглощение ауксохромно замещенных бензолов зависит от рН среды.

Влияние ауксохромного замещения на спектр бензола

Соединение	E_{i} -Полоса		В-По.	лоса	Doggeonyreth	
	λ _{max} , вм	e _{max}	λ _{max} , им	e _{max}	Растворитель	
Farrage T	204	7 900	256	200	Гексан	
Бензол	210	7 600	265	240	Этиловый спирт	
Хлорбензол Глафонов	236	10 000	269	700	Гексаи	
Гнофенол Ани зол	217	6 400	269	1 480	2%-ный метило- вый спирт	
Фонол	210,5	6 200	270	1 450	Вода	
Фенол Фенолят-анион	235	9 400	287	2600	Водная щелочь	
	214	6 300	276	2300	Вода (рН 3)	
Пирокатехин Пирокатехи-	236,5	6 800	292	3 500	Вода (рН 11)	
нат-анион	230	8 600	280	1 430	Вода	
Анилин	203	7 500	254	160	Водная кислога	
Апилиний-катион	255	11 000	272	2 000	Циклогексан	
Дифен ил овый эфир	200	11 000	278	1 800		

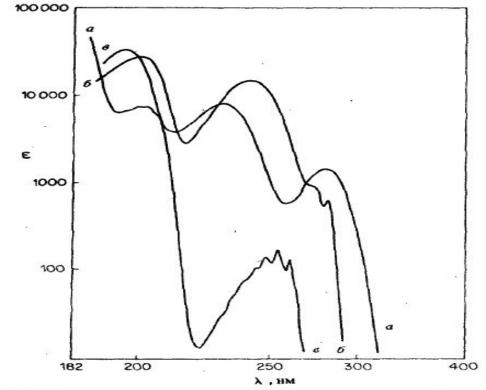
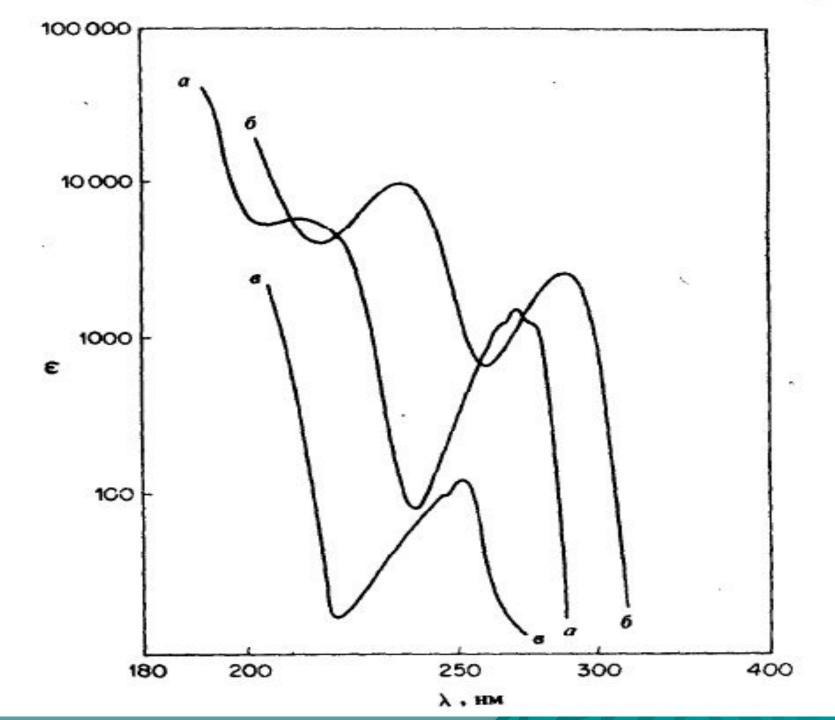
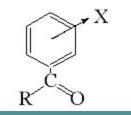



Рис. 2.6. Влияние протоннрования и N-ацилирования на ультрафнолетовый спектр анилина (в гексане) (а); ацетанилида (в гексане) (б); гидросульфата анилиння (а воде) (в). Спектры воспроизведены с разрешения из сборника: UV Atlas of Organic Compounds, Butterworths, London; Verlag Chemie, Weinheim, 1966 - 1971.

Хромофорное замещение в бензолах

Соединевие	37	ереход 1 → п* полоса)	В-По	лоса	Переход $n \to \pi^*$ (<i>R</i> -полоса)		Раство-
	λ _{max'} нм	e _{māx}	λ _{max} ,	e _{max}	λ _{max} .	€ _{max}	ритель
Бензол	_	_	255	215		_	Спирт
Стирол	244	12 000	282	450	_	_	>>
Фенилацетнлен	236	12 500	278	650	_		Гексан
Бензальдегид	244	15 000	280	1 500	328	20	Спирт
Ацетофенон	240	13 000	278	1 100	319	50	>>
Нитробензол	252	10 000	280	1 000	330	125	Гексан
Бензойная кислота	230	10 000	270	800	_	_	Вода
Фенилцианид	224	13 000	271	1 000	-	8	>>
Дифенилсульфоксид	232	14 000	262	2 400	_	_	Спирт
Феннлметнлсульфон	217	6 700	264	977			
Бензофен о н	252	20 000		_	325	180	Спирт
Дифенил	246	20 000	Пере- крыта		_	_	»
Стнльбен (цис)	283	12 300 ⁶	То же				*
Стильбен (<i>транс</i>) І-Феннлбутадиен-1,3	295 *	25 000 ⁶	»		_	-	39
цис	268	18 500	-	_		_	Изоокта
транс	280	27 000	_	_	_	_	>>
Пентаднен-1,3		econor of the first of					
<i>4uc</i>	223	22 600	_	_	_		Спирт
транс	223,5	23 000	_	_	_		>>


Спектроскопия УФ- и видимого диапазона

Ароматика

Влияние заместителей в системе C_6H_5 -X (в спирте)

E_I полоса		поса	В полоса			E_I полоса		В полоса	
X	λ_{max} , нм	ϵ_{max}	λ_{max} , нм	ϵ_{max}	X	λ_{max} , нм	ϵ_{max}	λ_{max} , нм	ϵ_{max}
-	203	7.400	256	200	OH	211	6.200	270	1450
CH ₃	206	7.000	261	225	SH	236	8.000	171	630
F	204	8.000	248	500	NH ₂	230	8.600	280	1430
C1	210	7.400	264	190	H ₂ C=CH ₂	244	12.000	282	750
Br	210	7.900	261	192	NO_2	259	8.000	-	-

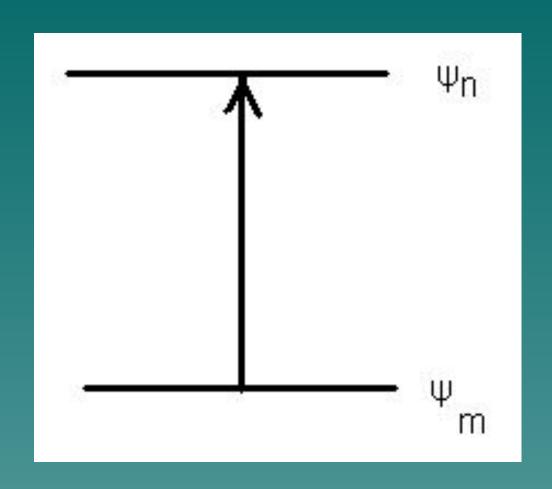
Инкременты заместителей для полосы ПЗ (правило Скотта)

X	Alk	-OH,-OR	O.	C1	Br	NH ₂ -	NHCOCH ₃	$N(CH_3)_3$
opmo-	3	7	11	0	2	11	20	20
мета-	3	7	20	0	2	11	20	20
пара-	10	25	78	10	15	58	45	85

R=Alk, λ_0 = 246 нм; R=OH, O-Alk, λ_0 = 230 нм; R=H, λ_0 = 250 нм;

Спектроскопия УФ- и видимого диапазона

N-содержащие соединения.


Соединение	Тип перехода	λ (HM)	8
D.N.—NID	n→π*	350-370	20-400
	$\pi{ ightarrow}\pi^*$	< 200	1000
CH_3NH_2	n→σ*	173	
$(CH_3)_2NH$	n→σ*	190	
$(CH_3)_3N$	n→σ*	199	4000
CR ₂ =CH-NH ₂		+40 - +50	20000
RC≡N		100-170	
D MO	n→π*	270	20-40
R-NO ₂	$\pi{ ightarrow}\pi^*$	200	50000
D1. N/O	n→π*	330	125
Ph-NO ₂	ПП3	260	8000

Расчет интенсивности полос поглощения

1) При переходе в возбужденное состояние хромофоры приобретают дипольный момент за счет разделения зарядов.

$$H_2C = CH_2$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 CH_2
 $O = CH_2$
 $O = CH_2$
 $O = CH_3$
 O

$$H_2C$$
 CH_2
 H_2C
 CH_2
 CH_3
 CH_3

- 2) Разрешенным переходом называется такой переход, для которого квадрат дипольного момента перехода не равен нулю.
- A) Дипольный момент (µ)

$$\mu = er$$
 (1)

• Б) Квантовомеханическое среднее

$$<\lambda> = \int \psi_{m} \lambda \psi_{n} dv$$
 (2)

• В) Дипольный момент перехода (D)

$$D = \int \psi_m(\Sigma er_i) \psi_n dv = e \int \psi_m(\Sigma r_i) \psi_n dv = eQ \quad (3)$$

- Есть мера приобретенного дипольного момента при переходе молекулы в возбужденное состояние.
- Г) Длина момента перехода (момент перехода) (Q)

$$Q = \int \psi_{m}(\Sigma r_{i}) \psi_{n} dv \tag{4}$$

- Длина момента перехода есть мера среднего смещения электрона за время перехода в возбужденное состояние.
- Д) $D^2 \neq 0$ переход разрешен.

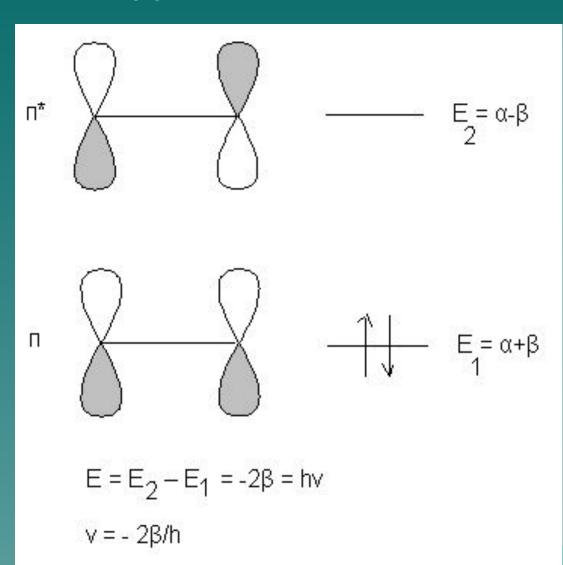
Сила осциллятора и интегральная интенсивность поглощения

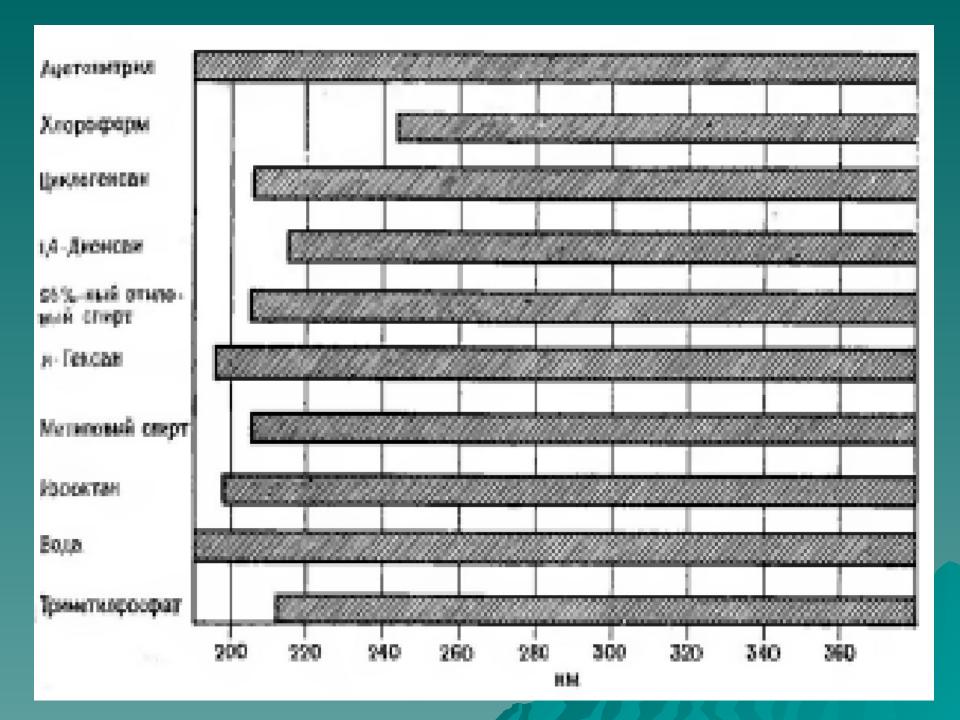
Сила осциллятора (f) которая характеризует число осцилляторов с массой m и зарядом е.

• E) Сила осциллятора (f)

$$f = 1,085 \ 10^{-5} \text{v Q}^2$$
 (5)

$$f = 4,6 \ 10^{-9} \int \varepsilon_{\text{Max}} dv \tag{6}$$


Д) Интегральная интенсивность (A)


$$A = \int_{\nu_1}^{\nu_2} \varepsilon d\nu \tag{7}$$

$$\bullet \quad A = \varepsilon_{\text{max}} \Delta v \tag{8}$$

v – волновое число

Расчет длины волны поглощения

