Общая морфология и функциональная характеристика процесса выделения. Анатомия органов мочевой системы

Конкиева Наталья Анатольевна 2019

Морфофункциональная характеристика органов выделения. Процесс выделения.

- Студент должен знать
- Значение образования мочи.
- Органы мочевыделительной системы
- Строение и функции почек
- Стадии образования мочи
- Строение и функции мочеточников
- Строение и функции мочевого пузыря
- Строение и функции мочеиспускательного канала. Акт мочеиспускания.

Значение образования мочи

- Мочевая система система органов образования и выведения мочи из организма. Мочевые и половые органы тесно взаимосвязаны.
- В ходе обмена веществ в организме образуются ядовитые вещества мочевина, мочевая кислота, скатол и т.д.
- Почки –основной экскреторный орган, выводящий с мочой 75% всех продуктов распада.

- Кроме мочевых органов выделительной функцией обладают кожа, легкие, ЖКТ.
- Легкие выделяют CO2 и воду (400 мл в сутки),
- печень желчные кислоты,
- ЖКТ соли железа, кальция, каловые массы
- Пот и моча качественно схожи по составу, но моча все компоненты содержит в 8 раз больше.

Органы мочевыделительной системы

К мочевыделительной системе относятся:

- 1-Почки
- 2-Мочеточники
- 3-Мочевой пузырь
- 4-Мочеиспускательный канал

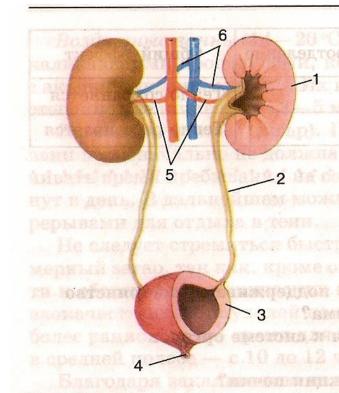
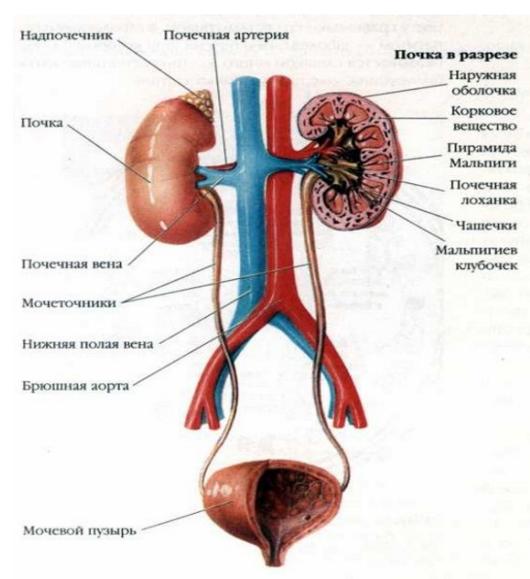
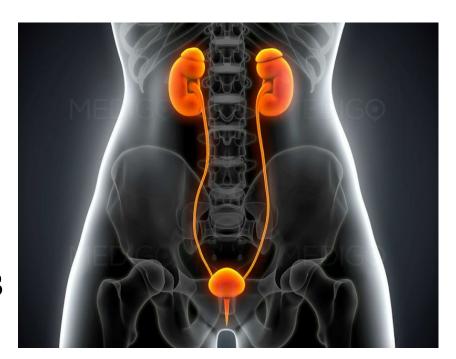



Рис. 87. Система органов мочевыделения:

- 1 почки; 2 мочеточники;
- 3 мочевой пузырь; 4 мочеиспускательный канал; кровеносные сосуды: 5 — почечная артерия;
- 6 почечная вена

Органы мочевыделительной системы

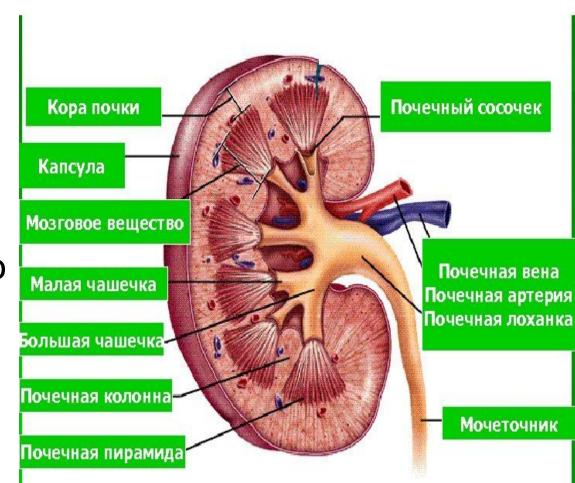
- Моча образуется в почках.
- Мочеточники служат для выведения мочи в мочевой пузырь,
- который служит резервуаром для мочи и выталкивания ее при мочеиспускании,
- мочеиспускательный канал служит для выведения мочи.



Функции почек:

- Образование мочи
- Регуляция артериального давления
- Регуляция кроветворения
- Регуляция водно- солевого обмена
- Регуляция кислотно щелочного равновесия
- Почки удаляют из плазмы мочевину, мочевую кислоту, креатинин;
- Контролируют уровни натрия, калия, хлора, кальция, магния;
- Выводят чужеродные вещества: пенициллин, сульфаниламиды, йодиды, краски;
- Способствуют регуляции рН;
- Поддерживают гомеостаз;
- Участвуют в обменных процессах;
- Гормональная функция (ренин повышает АД, эритропоэтин стимулирует гемопоэз).

Почка (ren, nephros) – парный паренхиматозный орган,

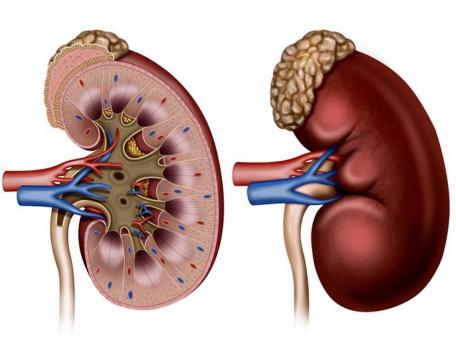

- расположенный в поясничной области на задней стенке брюшной полости
- Левая почка на уровне 12 грудного 1-2-ого поясничного позвонка.
- Правая почка на уровне 1-3 поясничного позвонка (печень).
- Размеры почки:
- длина 10-12 см, ширина 5-6 см.
- Масса до 200гр.

Брюшина –

покрывает почку только по передней поверхности.

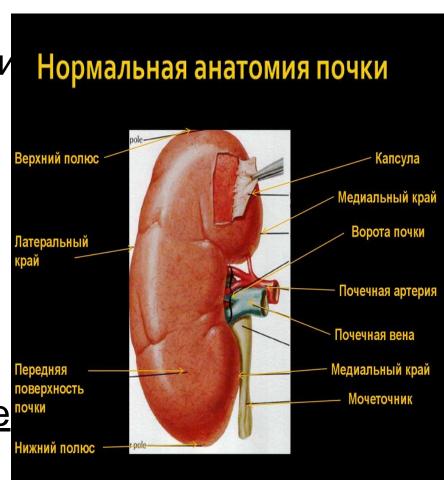
Т.о., почка лежит забрюшинно (экстраперитонеаль но, ретроперитонеально).

Внешнее строение почки:

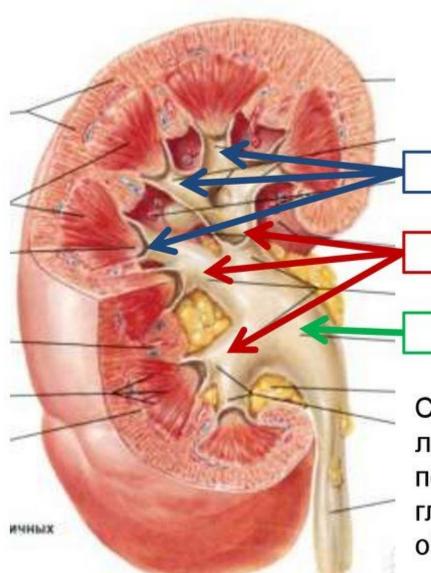

- 1) Поверхности почки:
- передняя и задняя;
- 2) <u>Полюса почки</u>:
- верхний и нижний;
- 3) <u>Края</u>:

латеральный и медиальнь

Через почечные ворота:


- 1) в почку входят: почечная артерия, нервы;
- 2)выходят: почечные вены, лимфатические сосуды, мочеточник.

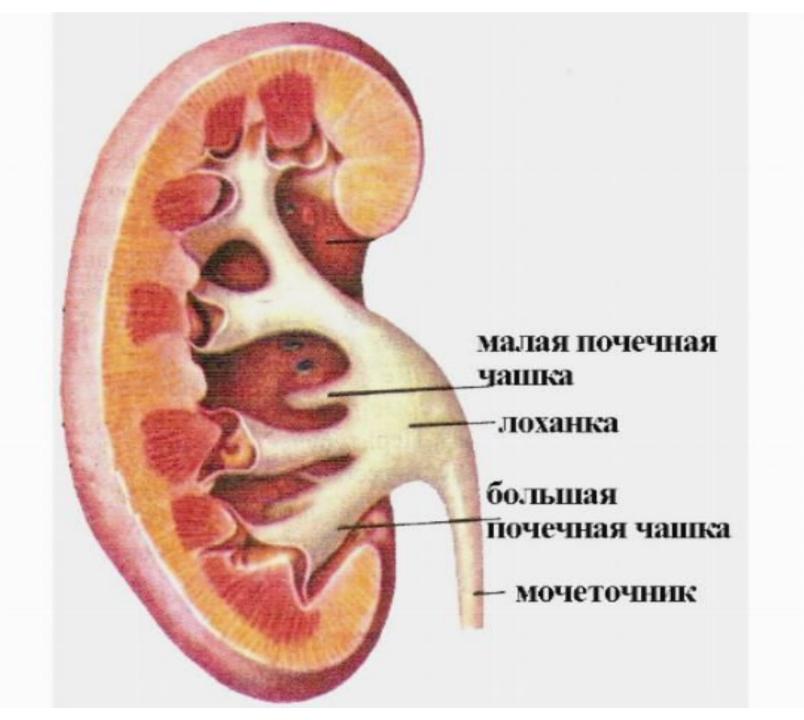
• Почка лежит во фронтальной плоскости



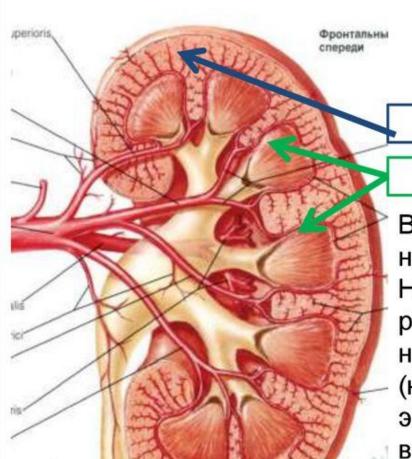
Фиксирующий аппарат почки:

- 1) Оболочки почки:
 - фиброзная капсула –
 - прилежит к веществу почки тёмно-красная;
 - жировая капсула;
 - почечная фасция;
 - 2) <u>Почечная ножка</u> (сосуды, нервы)
 - 3) <u>Почечное ложе</u> (мышцы)
 - 4) Внутрибрюшное давление

Почка состоит из 2 частей: почечная пазуха (полость) и почечное вещество


Почечную пазуху образуют малые и большие почечные чашки, почечная лоханка, нервы и сосуды, окруженные клетчаткой.

Малые почечные чашки (8-12 шт)


Большие почечные чашки (2-3 шт)

Почечная лоханка

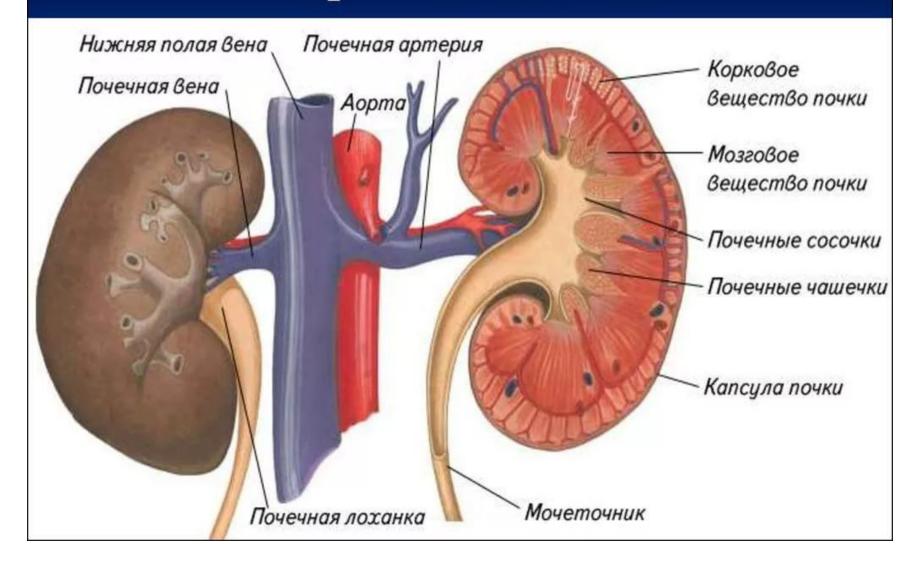
Стенка почечных чашек и почечной лоханки состоит из слизистой оболочки, покрытой переходным эпителием, гладкомышечной и адвентициальной оболочек.

Почка состоит из 2 частей: почечная пазуха (полость) и почечное вещество

Почечное вещество (паренхима) состоит из соединительной ткани, сосудов и нервов. Имеет 2 слоя:

Наружный слой - КОРКОВЫЙ

Внутренний слой - МОЗГОВОЙ

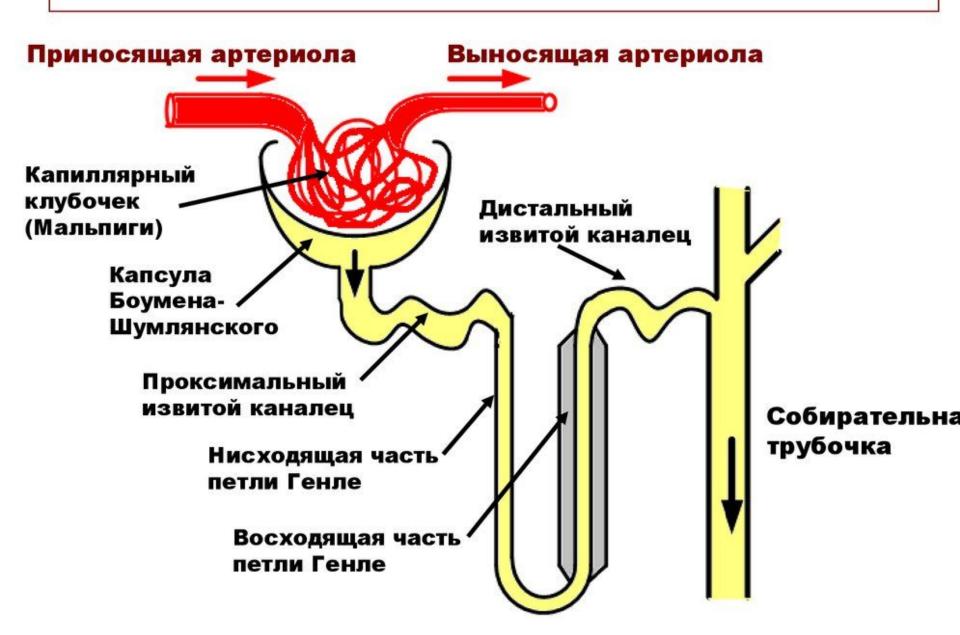

В корковом слое расположено 80% нефронов.

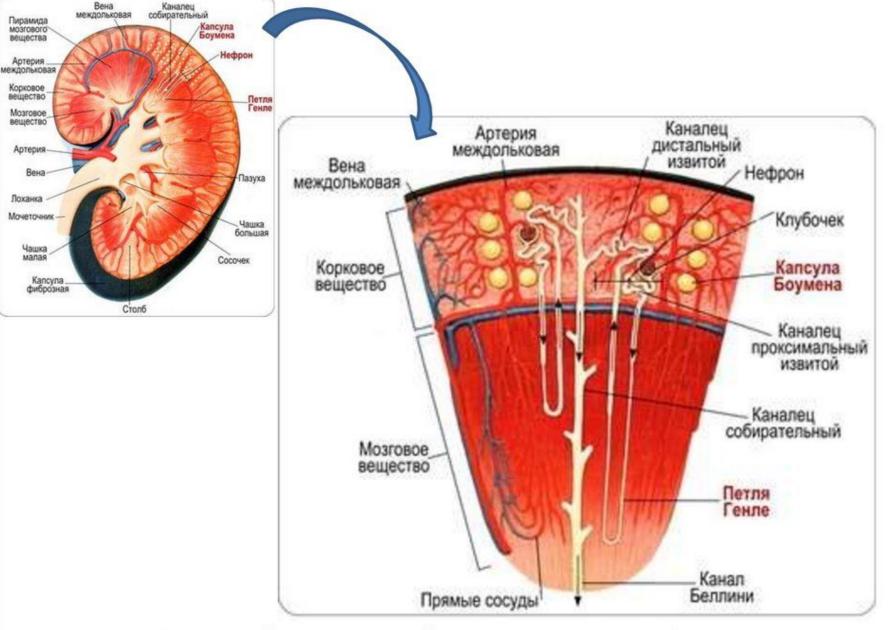

На границе коркового и мозгового слоев располагаются 20% нефронов. Эти нефроны называются околомозговые (юкстамедуллярные), они выполняют эндокринную функцию почек – вырабатывают ренин и эритропоэтин.

НЕФРОН – структурно-функциональная единица почки.

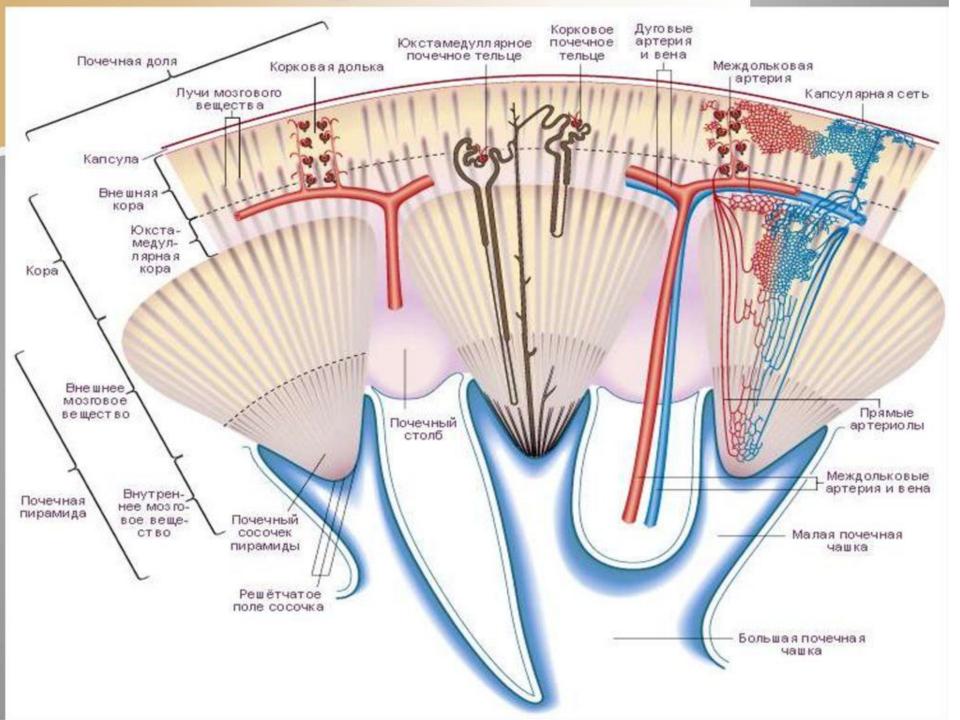
Количество их в одной почке около 1 млн, но одновременно функционирует только 1/3 нефронов.

Строение почки





отруктурно — функциональной единицей почки является нефрон.


- Нефрон включает:
- 1)Почечное тельце (в корковом слое)
- Капиллярный клубочек
- Капсула Шумлянского Боумена
- 2)Канальцы
- Проксимальный извитой каналец (в корковом слое)
- Петля Генле (в мозговом слое)
- Дистальный извитой каналец (в корковом слое)

СТРОЕНИЕ НЕФРОНА

Разрез "пирамиды" почки-видны нефроны и капсулы Боумена, канальцы нефрона

Стадии образования мочи

Моча образуется в нефронах, поступает в собирательные трубочки, затем - в почечный синус.

- Стадии образования мочи:
- І.Образование первичной мочи (капсула Ш-Б).
- Фильтрация. Образуется первичная моча (120-180 л)
- II. Образование вторичной мочи (системе канальцев).
- Реабсорбция. Обратное всасывание в кровь нужных организму веществ.
- Секреция. Выделение веществ из крови в просвет канальцев нефрона.
- Образуется вторичная (конечная) моча 1,5 2 л за сутки.

Этап	Образование первичной	Образование вторичной
	мочи	мочи
Кол-во в	150 — 170 л	1,2 — 1,5 л
сутки		
Где	Образуется в капсулах	Образуется в канальцах
происходит	нефронов	нефрона
Процессы и	Фильтрация за счет	Реабсорция – обратное
их причина	разницы давлений в	всасывание по принципу
9mm 4.6	клубочке артериол и	диффузии и осмоса
	полости капсулы	
Состав	H₂O, глюкоза,	H ₂ O, мочевина, аммиак,
	минеральные соли,	глюкоза (до 0, 11%),
	витамины, аминокислоты,	мочевая кислота,
	гормоны, мочевина.	креатинин, избыток
	Не должно быть : белка,	лекарств.
	клеток крови.	Не должно быть : белка,
		клеток крови, глюкозы
		(более 0,2%)

Составьте рассказ по схеме

Регуляция работы почек

Нервная

(нервными импульсами)

Симпатическая н.с. уменьшает **V** мочи

Парасимпатическая н.с. увеличивает **V**мочи

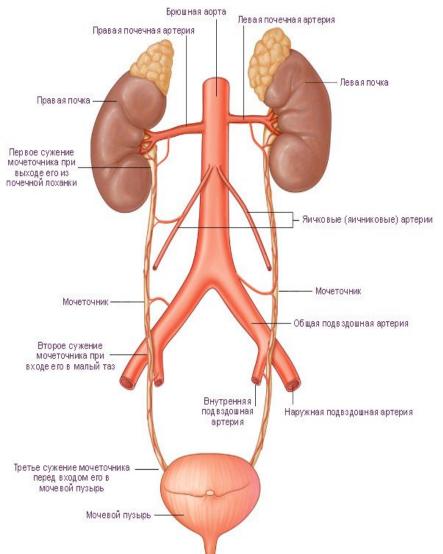
Кора головного мозга
– контроль
мочеиспускания

Гуморальная (гормонами)

Гормон вазопрессин уменьшает **V** мочи (АДГ)

Сравнительный состав плазмы крови, первичной и вторичной мочи

Вещества	Плазма крови, %	Первичная моча, %	Вторичная моча, %
Белки, жиры, гликоген	7-9	_	_
Глюкоза	0,1	0,1	
Натрий (в составе солей)	0,3	0,3	0,4
Хлор (в составе солей)	0,37	0,37	0,7
Калий (в составе солей)	0,02	0,02	0,15
Мочевина	0,03	0,03	1,8
Мочевая кислота	0,004	0,004	0,2


Признак	Первичная моча	Вторичная моча	
Количество	180-200 литров	1,5 – 2 литра	
Состав	Минеральные соли, глюкоза, аминокислоты, витамины, вредные продукты обмена.	Избыток минеральных солей, вредные продукты обмена, избыток глюкозы	

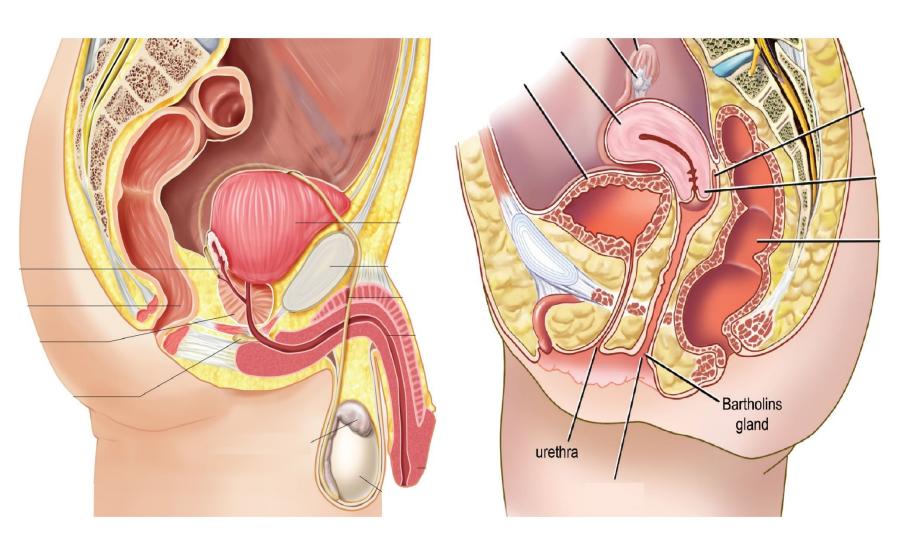
Строение и функции мочеточников

- Мочеточник (ureter) парные трубки длиной 30 35 см, диаметром 3 9 мм.
- Они выводят мочу из почечной лоханки в мочевой пузырь.
- Моча передвигается по мочеточникам благодаря перистальтике их стенок.
- Мочеточник начинается от почечной лоханки, спускается по задней брюшной стенке, подходит к дну мочевого пузыря и входит в его полость.

Строение и функции

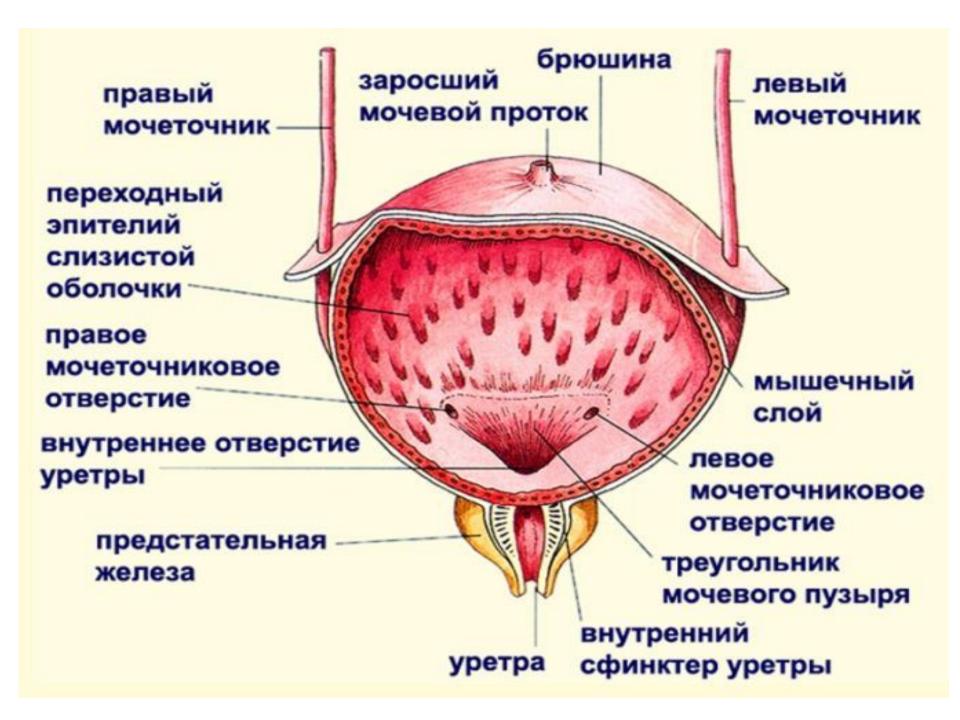
мочеточника:

L)Брюшная 15-17 CM


2)Тазовая 15-17 cm 3) Внутристеночная 1,5-2 см

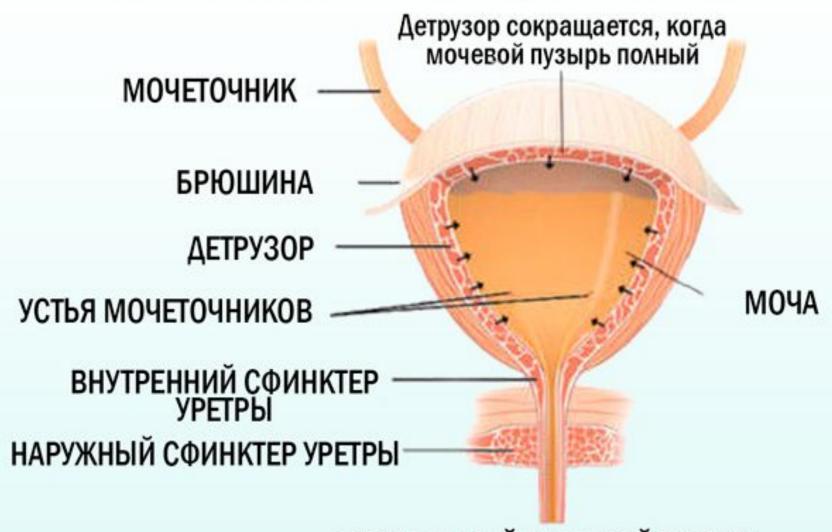
- Изгибы мочеточника:
- поясничная область
- тазовая область
- перед впадением в мочевой пузырь
- Сужения мочеточника:
- переход лоханки в мочеточник
- переход брюшной части в тазовую
- впадение в мочевой пузырь

Строение стенки мочеточника:


- 1) внутренняя слизистая оболочка (переходный эпителий, продольные складки, облегчающие прохождение мочи, в разрезе мочеточник имеет звездчатую форму)
- 2) средняя гладкомышечная (в верхней части 2 слоя продольный и круговой, в нижней части 3 слоя наружный и внутренний продольные, средний круговой)
- 3) наружная адвентиция (рыхлая волокнистая соединительная ткань)
- Брюшина покрывает мочеточник спереди (забрюшинно).

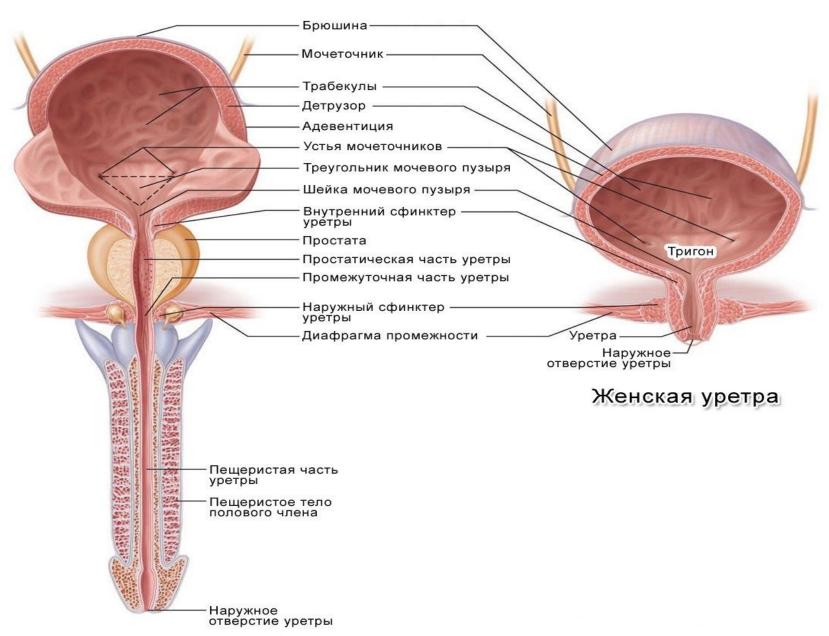
- Мочевой пузырь (vesica urinaria, cystis) непарный полый орган, служащий для накопления мочи и удаление ее через мочеиспускательный канал.
- Форма его непостоянная, емкость 700 мл. расположен в полости малого таза за лобковым симфизом.
- При наполнении его мочой верхушка пузыря выступает и соприкасается с передней брюшной стенкой.
- Задняя поверхность пузыря соприкасается у мужчин с прямой кишкой, семенными пузырьками и ампулами семявыносящих протоков, а у женщин с шейкой матки и

- Части:
- верхушка
- тело
- дно
- шейка
- На дне пузыря имеется участок треугольной формы,
- мочепузырный треугольник, на вершине которого имеются 3 отверстия (два мочеточниковых и одно внутреннее мочеиспускательное).

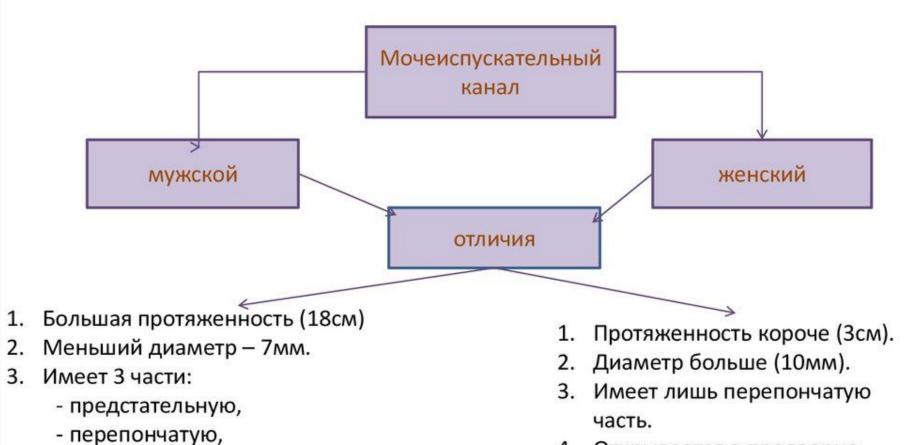


- Стенка пузыря:
- <u>внутренняя слизистая</u> (многослойный переходный) <u>с подслизистой основой</u>
- <u>средняя гладкомышечная</u> (наружный, внутренний продольний и средний круговой)
- наружная адвентиция и частично серозная
- Подслизистая основа образует складки на слизистой оболочке. Они отсутствуют в треугольнике,т. к. там нет подслизистой основы.

- 1)В области шейки у начала мочеиспускательного канала круговой слой мускулатуры образует внутренний сфинктер- непроизвольный сфинктер мочевого пузыря.
- 2)В мочеполовой диафрагме наружный сфинктер- произвольный.
- Моча выделяется из пузыря путем сокращения его стенок (мышца, удаляющая мочу).
- Брюшина покрывает пузырь с 3 сторон: сверху, сзади и с боков.


СТРОЕНИЕ МОЧЕВОГО ПУЗЫРЯ

НОРМАЛЬНЫЙ МОЧЕВОЙ ПУЗЫРЬ


Строение и функции мочеиспускательного канала

- Мочеиспускательный канал (urethra) ;
- У женщины мочеиспускательный канал открывается в преддверии влагалища.
- У мужчины мочеиспускательный канал открывается на головке полового члена.
- Мужской мочеиспускательный канал
- (urethra masculine) эластичная трубка длиной 18 23 см, диаметр 5 7 мм.
- Он служит для выведения мочи и спермы наружу. Начинается внутренним отверстием у мочевого пузыря и заканчивается наружным отверстием на головке полового члена.
- Части мужской уретры:
- предстательная (3см)
- перепончатая (1,5см)
- губчатая (20см)

Мужская уретра

Мочеиспускательный канал

Функция - выведение мочи из организма

- губчатую.

Имеет 2 кривизны и 3 сужения.

Открывается в предверие

влагалища

Акт мочеиспускания

ФОРМИРОВАНИЕ УПРАВЛЯЕМОГО АКТА МОЧЕИСПУСКАНИЯ

- Функция растяжения мочевого пузыря в период наполнения мочой и его сокращение при опорожнении за счет гладкой м-ры детрузора (т. detrusor), синергисты м-цы брюшного пресса и промежности
- Выход из МП в мочеиспускательный канал закрывается 2-мя сфинктерами:
- внутренний гладкомышечный (т. sphincter intemus)
- наружный поперечно-полосатый (т. sphincter extemus)
- При опорожнении МП сокращается детрузор и расслабляются сфинктеры, при замыкании МП наоборот
 - При объеме 150 мл мочи позывы на мочеиспускание
 - 250-500 мл период опорожнения мл

ФОРМИРОВАНИЕ УПРАВЛЯЕМОГО АКТА МОЧЕИСПУСКАНИЯ

- Рефлекторная деятельность мочевого пузыря регулируется корой головного мозга парацентральная долька
- Область передней центральной извилины кортикоспинальные волокна в боковых столбах спинного мозга достигают крестцового отдела (SII SIV) спинного мозга произвольно тормозится или усиливается позыв к мочеиспусканию, за счет ППМ наружного сфинктера
- Чувствительный центр средняя треть задней центральной извилины
 - Субкортикальные центры зрительный бугор, гипоталамус

ФОРМИРОВАНИЕ УПРАВЛЯЕМОГО **АКТА МОЧЕИСПУСКАНИЯ**

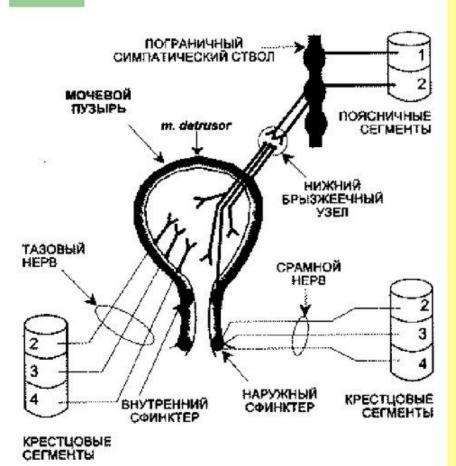


Рис. 1 Иннервация мочевого пузыря

- Основным вегетативным центром является спинальный центр регуляции акта мочеиспускания, располагающийся на уровне пояснично–крестцовых сегментов спинного мозга
- Симпатический центр
 (Th XII L II-III) за адаптацию МП (по мере заполнения мочевого пузыря мочой давление в нем не повышается)
- Парасимпатический центр (SI-SIV) - за вегетативное обеспечение сократительной активности детрузора