
WEB
WORKERS

by Maksym Khudoliy

WEB WORKERS

Web Workers allow you to perform long in time and complex tasks without blocking the
user interface, i.e. performing complex work, the browser will continue to respond quickly
to user actions. Web Workers run on a separate, isolated thread, so the Web Workers
code must be kept in a separate file. They do not have access to the "window" and
"document" objects, i.e. Web Workers cannot directly manipulate user interface graphics

Examples of tasks where you should consider using Web Workers:

• preloading data

• large data caching

• analysis of text/audio/video according to various criteria

• encryption

WEB WORKERS

To start working with Web Workers, you need to create Worker object type, the parameter
of which specifies the name of the file with the code. If the specified file does not exist,
there will be a 404 error and the object will not be created

The interaction between the main thread of the Web page and the Web Workers is
based on the event system and message passing:

• to transfer data, the postMessage(data) method is used, the parameter of which is the
data to be transferred

• to receive data, the "message" event is used, into the handler of which an object of the
MessageEvent type will be passed, the "data" property of which contains the
transferred data

WEB WORKERS

Please note, that the postMessage() method and the "message" event are used by both
the main thread of the Web page and Web Workers, i.e. if the main thread of the Web
page wants to transfer data to Web Workers, it calls postMessage(), the same does the
Web Workers if it wants to transfer data to the main thread of the Web page

There are two ways to stop Web Workers:

• call the terminate() method on the main thread of the web page

• call close() method inside Web Workers

WEB WORKERS

To demonstrate how Web Workers work, let's create the following files:

• index.js – the code of the main thread of the Web page

• worker.js – Web Workers code

• index.html – Web page, only needed to include index.js

Please note, that the files must be placed on any available server. If you run the code
without a server, directly in the browser, Web Workers will not work

WEB WORKERS

index.js file:

const w = new Worker("worker.js");

w.addEventListener("message", (e) => {

 console.log("Main <- Worker:", e.data);

});

w.postMessage("Hello Worker!");

setTimeout(() => w.postMessage("Hello World!"), 1000);

setTimeout(() => w.postMessage("stop"), 2000);

We create Worker object type. Add a handler to the "message" event to receive messages from Web
Workers. We send data three times with a small delay

WEB WORKERS

worker.js file:

console.log("Worker started");

addEventListener("message", (e) => {

 if (e.data !== "stop") {

 console.log("Main -> Worker:", e.data);

 postMessage("data received");

 } else {

 close();

 console.log("Worker stopped");

 }

});

WEB WORKERS

We display the start of work in the browser console. Add a handler to the "message" event
to receive messages from the main thread of the Web page. If the main thread of the Web
page passes the string "stop", we stop working

After running the code, the browser console will display the following output:

Worker started

Main -> Worker: Hello Worker!

Main <- Worker: data received

Main -> Worker: Hello World!

Main <- Worker: data received

Worker stopped

WEB WORKERS

During the execution of Web Workers, errors may occur, the "error" event is responsible
for handling errors, and an error object and its useful properties will be passed to its
handler:

• filename – the name of the file that contains the script that caused the error

• lineno – the line number where the error occurred

• message – error description

WEB WORKERS

An example of error handling. index.js file:

const w = new Worker("worker.js");

w.addEventListener("error", (e) => {

 console.log("File:", e.filename);

 console.log("Error in", e.lineno, "line");

 console.log("Message:", e.message);

});

w.postMessage("Hello Worker!");

WEB WORKERS

worker.js file:

console.log("Worker started");

addEventListener("message", (e) => {

 console.log(x);

});

After running the code, the browser console will display the following output:

Worker started

File: http://localhost:3000/worker.js

Error in 5 line

Message: Uncaught ReferenceError: x is not defined

SoftServe Confidential

