
ТИПЫ ДАННЫХ КОНСТАНТЫ С++

Основными объектами любой программы являются данные

Константы – данные, не изменяемые в процессе выполнения программы.

Поименованные константы – константы, обращение к которым выполняется по имени. Они описываются в разделе описаний.

Литералы – это лексема, представляющая изображение фиксированного числового, строкового или символьного значения, записанная в тексте программы.

Константы делятся на пять групп:

- целые,
- вещественные,
- перечислимые,
- символьные,
- строковые.

Компилятор, выделив константу, относит ее к той или другой группе по ее «внешнему виду» (по форме записи) в исходном тексте и по числовому значению.

Целые константы могут быть десятичными, восьмиричными и шестнадцатиричными.

Десятичная константа определена как последовательность десятичных цифр, начинающаяся не с нуля, если это число не нуль. Может быть отрицательной и положительной.

Пример: 16, 56783, 0, -567, 7865.

Восьмиричная константа определена как последовательность последовательность десятичных цифр от о до 7, всегда начинающаяся с нуля. Может быть отрицательной и положительной.

Пример: 016, 020, 0777,

Шестнадцатиричная константа определена как последовательность шестнадцатиричных цифр, которая начинается сочетанием ох. Может быть отрицательной и положительной.

Пример: ox3o, oxF, oxe,ox56AD.

В зависимости от значения целой константы компилятор представляет ее в памяти в соответствии с типом. Для явного указания способа представления программист может использовать суффиксы L,l или U,u (64L, 067u, 0x56L).

Вещественные константы представлены в формате с плавающей точкой.

Константа с плавающей точкой может включать семь частей:

- целая часть (десятичная целая константа);
- десятичная точка;
- дробная часть (десятичная целая константа);
- признак экспоненты (символ е или Е);
- показатель десятичной степени (десятичная целая константа, возможно со знаком);
- суффикс F(или f) либо L(или l).

В записи вещественного числа могут опускаться целая или дробная часть (но не одновременно), десятичная точка или признак экспоненты с показателем степени, суффикс.

Пример: 66. .045 .0 3.1459F 1.34e-12 45E+6L 56.891

Без суффиксов F или L под вещественную константу отводится 8 байт.

Символьные константы – это один или два символа, заключенные в апострофы.

Примеры:

```
'Z' '*' '$' \\o12' \\o' \\n'-односимвольные константы.
```

```
'db' '\xo7\xo7' '\n\t' - двухсимвольные константы.
```

Символ \'используется для:

- записи кодов, не имеющих графического изображения
- символов ('),(\),(?),(")
- Задания символьных констант, указывая их коды в 8-ричном или 16 -ричном виде.

Последовательность символов, начинающаяся с символа \' называется эскейп-последовательностью.

Строка или строковая константа определяется как последовательность символов, заключенная в кавычки.

Пример:

"Это пример строки, называемой строковой константой"

Среди символов строки могут быть эскейп-последовательности, то есть сочетания, соответствующие неизображаемым символьным константам или символам, задаваемых их внутренними кодами. В этом случае они начинаются с символа \\'.

"\nЭто строка,\nиначе -\"стринг\",\nиначе - \"строковый литерал\"."

Перечислимые константы по существу (по внутреннему представлению) являются обычными целыми константами, которым приписаны уникальные и удобные для использования обозначения. Будут рассмотрены далее.

ПЕРЕМЕННЫЕ

Переменные

Переменные – поименованные данные, которые могут изменяться в процессе выполнения программы.

Переменные характеризуются именем и значением.

Именем служит идентификатор.

Переменная – это частный случай объекта как поименованной области памяти. Отличительной чертой переменной является возможность связывать с ее именем различные значения, совокупность которых определяется типом переменной.

При определении значения переменной в соответствующую ей область памяти помещается некоторый код.

Это может происходить:

- во время компиляции, тогда переменная называется инициализированной (int s=56);
- во время выполнения программы, тогда переменная называется неинициализированной (char C).

Переменная типизируется с помощью определений и описаний.

Типы данных

Тип – описатель данных, который определяет:

- а) диапазон изменения значения, задавая размер ее внутреннего представления;
- б) множество операций, которые могут выполняться над этой переменной
- в) требуемое для переменной количество памяти при ее начальном распределении
- г) интерпретацию двоичного кода значений при последующих обращениях к переменным.

Кроме того, тип используется для контроля типов с целью обнаружения возможных случаев недопустимого присваивания.

В С++ стандартно определено большое количество типов, которые программист может использовать без предварительного описания.

Фундаментальные типы данных. Интегральные типы

Имя типа	Подтипы	Размер ,	Интервал
		байт	значений
char или _int[8]	[signed] char	1	-128127
	unsigned char		0255
short или _int[16]	[signed] short	2	-3276832767
	unsigned short		065535
[int] или long или _int[32]	[signed] [int]	4	-2 ³¹ 2 ³¹ -1
	unsigned [int]		0 2 ³² -1
	[signed] long		
	unsigned long		
long long или _int[64]	[signed] long long	8	-2 ⁶³ 2 ⁶³ -1
	Unsigned long long		0 2 ⁶⁴ -1
bool		1	false (0), true(1)

Примечание – Для совместимости считается: 0 – false; не 0 – true.

Вещественные типы

Тип	Размер, байт	Значащих цифр	Минимальное положительное	Максимальное положительное
			число	число
float	4	6	1.175494351e-38	3.402823466e38
double (long double)	8	15	2.2250738585072014 e-308	1.797693134862318 e308

3. Неопределенный тип void

Нельзя объявлять значения типа void, он используется только при объявлении

- нетипизированных указателей;
- функций, не возвращающих значений (процедур).

Объявление переменных и поименованных констант

[<Изменчивость>] [<Тип>]<Список идентификаторов> [=<Значение>]; где <Изменчивость> – описатель возможности изменения значений:

- const поименованная константа,
- volatile переменная, меняющаяся в промежутках между явными обращениями к ней
- без указания изменчивости обычная переменная
 - <Тип> описатель типа: int, char, float, double и т.д.;
 - <Список идентификаторов> список имен переменных или констант;
 - <3начение> начальное значение переменной или значение

константы.

Примеры объявлений переменных и констант

```
Неинициализированные переменные:
 int f,c,d; float r;
 I, j; unsigned int max, min;
 char c1,c2; unsigned char c5;
   Инициализированные переменные
double k=89.34; char ch='G';
   Поименованные константы
const long a=6; const float pp=6.6e-34;
На практике все объявления могут быть перемешаны в описаниях программы:
const char simt='T';float max=100,min=-100;
double f,s,eps=0.001;
   Переменные и поименованные константы могут быть объявлены в любом месте программы:
вне всех функций, внутри функций, в любом месте функции.
```

Основное условие – объявление должно стоять до обращения к переменной или константе.

Перечисляемый тип

Используется для объявления набора поименованных целых констант.

Константы присваиваются, начиная с нуля или с указанного значения.

Объявление типа пользователя

typedef <Описание типа> <Имя объявляемого типа>;

```
Примеры:

1) typedef unsigned int word;

2) typedef enum {false, true} boolean;
```

Имя

нового типа